Transformations Lesson #3: Horizontal and Vertical Translations Part 1

Transformations

A transformation is an operation which moves (or maps) a figure from an original position to a new position. Transformations we will consider are translations, reflections, expansions and compressions, reciprocal transformations, and absolute value transformations.

Warm-Up #1

Comparing the Graphs of y = f(x) and y - k = f(x) [or y = f(x) + k]

Part 1

a) Complete the table of values. The first one has been completed.

$y = x^{2}$ $x \mid y$ $-3 \mid 9$ $-2 \mid 4$ $-1 \mid 1$ $0 \mid 0$ $1 \mid 1$ $2 \mid 4$ $3 \mid 9$		y-3			$y + 3 = x^2$	
X	У	X	У	X	У	
-3	9	-3	12	-3	6	
-2	4	-2	7	-2	1	
-1	1	x -3 -2 -1 0 1 2 3	4	-1	-2	
0	0	0	3	0	-3	
1	1	1	4	1	-2	
2	4	2	7	2	1	
3	9	3	12	3	= x - y - 2 - 3 - 2	

- b) Use the table of values in a) to graph and label each of the functions on the grid.
- c) What is the effect of the parameter k on the graph of the parabola $y - k = x^2$?

A vertical shift of Kunits

Part 2

a) Use a graphing calculator to graph the following functions:

i)
$$y = |x|$$

ii)
$$y = |x| + 2$$

iii)
$$y = |x| - 3$$

b) What is the effect of the **parameter** k on the graph of y = |x| + k?

c) What is the effect of the parameter k on the graph of the function y = f(x) + k?

d) What is the effect of the parameter k on the graph of the function y - k = f(x)?

A vertical shift of k units

shift of k units. If k > 0, the graph moves $\underline{\square}$. If k < 0, the graph moves $\underline{\square}$.

The notation y - k = f(x) is often used instead of y = f(x) + k to emphasize that this is a transformation on y. The concept of replacing y by y - k will be very important in this course. Warm-Up #2

Comparing the Graphs of y = f(x) and y = f(x - h)

Part 1

a) Complete the table of values. The first one has been completed.

i)	$y = x^2$		
	X	У	
	-4	16	
	-3	9	
	2	"	

$$y = (x - 3)^2$$

$$x \quad y$$

$$\mathbf{iii}) \ y = (x+3)^2$$

$$y = (x + 3)$$

$$x \quad y$$

$$-7 \quad ||_{6}$$

$$-6 \quad ||_{9}$$

- b) Use the table of values in a) to graph and label each of the functions on the same grid.
- c) What is the effect of the parameter h on the graph of the parabola $y = (x h)^2$?

Part 2

a) Use a graphing calculator to graph the following functions:

i)
$$y = \sqrt{x}$$

ii)
$$y = \sqrt{x-4}$$

i)
$$y = \sqrt{x}$$
 ii) $y = \sqrt{x-4}$ **iii**) $y = \sqrt{x+2}$

b) What is the effect of the **parameter** h on the graph of $y = \sqrt{x - h}$?

c) What is the effect of the **parameter** h on the graph of the function y = f(x - h)?

Translations

A translation is a transformation which slides each point of a figure the same distance in the same direction.

Given the function y = f(x):

- replacing y with y k, (i.e. $y \rightarrow y k$) describes a vertical translation. y - k = f(x) or y = f(x) + k describes a vertical translation.
- (i.e. $x \rightarrow x h$) • replacing x with x - h, describes a horizontal translation. y = f(x - h) describes a horizontal translation.

In general, if

$$y - k = f(x - h)$$
or
$$y = f(x - h) + k \text{ then}$$

k > 0 the graph moves up \uparrow y-k = f(x-h) or y = f(x-h) + k then k < 0 the graph moves down \downarrow h > 0 the graph moves right \rightarrow h < 0 the graph moves left \leftarrow

- If the graph of y = f(x) is transformed to the graph of y 2 = f(x 3), the replacements for x and y are $x \to x - 3$ and $y \to y - 2$. Under this transformation, all points on the graph of y = f(x) will move 3 units to the right and 2 units up. The point with coordinates (4, 6) will be translated to the point (7,8). In general the point with coordinates (x,y) is translated to the point (x + 3, y + 2). This translation can be represented in mapping notation by $(x, y) \rightarrow (x + 3, y + 2)$.
- Do not confuse mapping notation with the notation we have used for replacements.

Describe how the graphs of the following functions relate to the graph of y = f(x).

$$\mathbf{a)} \quad y = f(x - 3)$$

b)
$$y = f(x) + 4$$

c)
$$y - 1 = f(x + 10)$$

b)
$$y = f(x - 3)$$

b) $y = f(x) + 4$

c) $y - 1 = f(x + 10)$

hor translation

Vert translation

3 units right

4 units up

hor trans 10 units left

The point (2, -3) lies on the graph of y = f(x). State the coordinates of the image of this point under the following transformations.

a)
$$y + 8 = f(x)$$
 $y = f(z) - 8$ Verticans 8 unit down (2, -3-8) \Rightarrow (2, -11)

b)
$$y = f(x-7) + 5$$
 how trans 7 right $(2+7, -3+5) \Rightarrow (9, 2)$ vert tran 5 up

c)
$$(x,y) \to (x+2,y+3)$$
 increase x by 2 (2+2,-3+3) => (4,6)
increase y by 3

Write the equation of the image of y = f(x) after each transformation.

a) A horizontal translation of 5 units left.

d)
$$(x, y) \rightarrow (x - 6, y + 1)$$
.

c) A translation of m units right and p units down. d) $(x,y) \rightarrow (x-6,y+1)$. decrease $x \rightarrow y \leftarrow y = f(x-m) - \rho$ y = f(x+6) + l In crease $y \rightarrow y \rightarrow l$

The graph of f(x) is shown. Sketch;

a)
$$y = f(x-2)$$
 2 units right

What happens to the graph of the function y = f(x) if the following changes are made to its equation?

a) replace x with x + 2

b) replace y with y - 8

$$y-8=f(x)$$

$$y=f(x)+8$$

Assignment

1. Describe how the graphs of the following functions relate to the graph of y = f(x).

a)
$$y = f(x + 9)$$

b)
$$y = f(x) + 7$$

c)
$$y = f(x - 4) + 4$$

d)
$$y - 6 = f(x)$$

e)
$$y = 3 + f(x - 5)$$

d)
$$v - 6 = f(x)$$
 e) $v = 3 + f(x - 5)$ f) $v + 2 = f(x + 3) - 10$

- 2. Write the equation of the image of y = f(x) after each transformation.
 - a) A vertical translation of 10 units down.
 - **b**) A horizontal translation of 8 units right and a vertical translation of 9 units up.
 - c) A translation of t units up and s units left.
- 3. The function y = f(x) is transformed to y = f(x h) + k. Find the values of h and k for the following translations.
 - a) 7 units right
- **b**) 4 units up and 2 units left
- c) a units right and b units down.
- **4.** The point (-3, 5) lies on the graph of y = f(x). State the coordinates of the image of this point under the following transformations.

a)
$$y = f(x) + 3$$

b)
$$y + 5 = f(x + 2)$$

a)
$$y = f(x) + 3$$
 b) $y + 5 = f(x + 2)$ **c**) $(x, y) \rightarrow (x - 7, y - 1)$

5. Given the graph of the function y = f(x) sketch the graph of the indicated function.

a)
$$y = f(x - 4)$$

b)
$$y - 3 = f(x)$$

c)
$$y = f(x + 2) - 3$$

d) y + 2 = f(x - 5)

- **6.** What happens to the graph of the function y = f(x) if you make these changes to its equation?
 - a) replace x with x 8

- **b**) replace y with y + 2
- c) replace x with x + 4 and y with y 7

- The function y = f(x) is transformed to y = f(x + 2) + 4. If the point (3, -1) lies on the graph of y = f(x), which of the following points must lie on the graph of y = f(x + 2) + 4?
 - A. (5,3)
 - **B.** (1,3)
 - C.(7,1)
 - **D.** (7,-3)
- 8. The function y = f(x) is transformed to y 3 = f(x 1). If the point (-2, 4) lies on the graph of y-3=f(x-1), which of the following points must lie on the graph of y=f(x)?
 - A. (-1,7)
 - **B.** (-1, 1)
 - C. (-3, 7)
 - **D.** (-3, 1)
- 9. The graph of y = g(x) was transformed to the graph of y = g(x 7) + 2. Which of the following statements describes the transformation?
 - A. The graph of y = g(x) has been translated 2 units to the right and 7 units upward.
 - **B.** The graph of y = g(x) has been translated 7 units to the left and 2 units downward.
 - C. The point (x, y) on the graph y = g(x) has been translated to point (x + 7, y + 2).
 - **D.** The point (x, y) on the graph y = g(x) has been translated to point (x 7, y 2).

Answer Key

- 1. a) horizontal translation 9 units left
- b) vertical translation 7 units up
- c) translation 4 units right and 4 units up
- d) vertical translation 6 units up
- e) translation 5 units right and 3 units up f) translation 3 units left and 12 units down
- **2.** a) y = f(x) 10 b) y = f(x 8) + 9 c) y = f(x + s) + t

- 3. a) h = 7, k = 0
- b) h = -2, k = 4 c) h = a, k = -b

- 4. a) (-3, 8)
- **b**) (-5,0)
- c) (-10, 4)
- 5. a) the graph is translated 4 units right
- b) the graph is translated 3 units up
- c) the graph is translated 2 units left and 3 units down
- d) the graph is translated 5 units right and 2 units down
- 6. a) horizontal translation 8 units right
- b) vertical translation 2 units down
- c) translation 4 units left and 7 units up
- 8. D
- 9. C