Transformations Lesson #4: Horizontal and Vertical Translations Part 2

Warm-Up

In the previous lesson we had the following note:

Given the function y = f(x):

- replacing y with y k, (i.e. $y \rightarrow y k$) describes a vertical translation. y - k = f(x) or y = f(x) + k describes a vertical translation.
- replacing x with x h, (i.e. $x \rightarrow x h$) describes a horizontal translation. y = f(x - h) describes a horizontal translation.

In general, if y - k = f(x - h) or y = f(x - h) + k then

k > 0 the graph moves up \uparrow k < 0 the graph moves down \downarrow h > 0 the graph moves right \rightarrow h < 0 the graph moves left \leftarrow

Describe how the graph of the second function compares to the graph of the first function.

a)
$$y = x^4$$
 vert trans
 $y = x^4 + 3$ 3 units up

a)
$$y = x^4$$
 vert trans
 $y = x^4 + 3$ 3 units up

b) $y = 6x - 3$ her trans
 $y = 6(x - 1) - 3$ 1 unit right

c)
$$y = |x|$$
 hor trans
 $y = |x-6| + 2$ hor trans
 $y = |x-6| + 2$ vert trans
 $y = \frac{1}{\sqrt{x+1}}$ hor trans
 $y = \frac{1}{\sqrt{x+1}}$ lunct left

d)
$$y = \frac{1}{\sqrt{x}}$$
 hor trans
 $y = \frac{1}{\sqrt{x+1}}$ | unit left

Write the equation of the image of:

- a) $y = x^{2}$ after a horizontal translation of 3 units to the right. $y = (x-3)^2$
- 4 = 10 + 2**b**) $y = 10^x$ after a vertical translation of 2 units up.
- c) $y = \sqrt{x}$ after a horizontal translation of 4 units to the left and $y = \sqrt{x + 4} - 3$ a vertical translation of 3 units down.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Class Ex. #3

The function represented by the thick line is a transformation of the function represented by the thin line. Write an equation for each function represented by the thick line.

a)

y=f(x+3)+4

 $y = \sqrt{x}$ is a radical function.

a) What vertical translation would be applied to $y = \sqrt{x}$ so that the translation image passes through (16, 7)?

 $y = \sqrt{x} + K$ $7 = \sqrt{16} + K$ K = 3 7 = 4 + K vert tran 3up

b) What horizontal translation would be applied to $y = \sqrt{x}$ so that the translation image passes through (17, 8)? $y = \sqrt{x-h} \qquad h = -47$ $8 = \sqrt{17-h} \qquad hor tran 47 units left$ 64 = 17-h h = 17-64

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

On a certain route trains travel at an average speed of 90km/h. The distance d, in kilometres, they travel can be described as a function of time, t, in hours, and represented by the equation d = f(t) = 90t.

A train leaves the station at 12:00 p.m. (t = 0). A second train travels with the same average speed, but leaves 3 hours later.

a) Write an equation which describes the distance travelled by the $_{8}$ second train.

b) Sketch a distance time graph for each train on the grid.

Complete Assignment Questions #1 - #8

Assignment

1. Describe how the graph of the second function compares to the graph of the first function.

a)
$$y = x^3$$

 $y = x^3 - 1$

b)
$$y = 7x - 1$$

 $y = 7(x - 3) - 1$

d)
$$y = |x|$$

 $y + 3 = |x + 6|$

d)
$$y = |x|$$

 $y + 3 = |x + 6|$
e) $y = \frac{1}{x^2 + 1}$
 $y - 2 = \frac{1}{(x - 3)^2 + 1}$
f) $y = a^x$
 $y = a^{x+1} + 1$

$$y = a^{x+1} + 1$$

- 2. Write the equation of the image of:
 - a) $y = x^4$ after a horizontal translation of 2 units to the left.
 - **b**) y = 2|x| after a translation of 3 units down and 1 unit left.
 - c) $y = \frac{1}{\sqrt{x}}$ after a horizontal translation of 3 units to the right and a vertical translation of 2 units up.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

3. The function represented by the thick line is a transformation of the function represented by the thin line. Write an equation for each function represented by the thick line.

- **4. a)** What vertical translation would be applied to $y = x^2$ so that the translation image passes through (3,5)?
 - **b**) What horizontal translation would be applied to $y = x^3 + 1$ so that the translation image passes through (5, 28)?
 - c) What horizontal translation would be applied to $y = \frac{1}{x-3}$ so that the translation image passes through $\left(1, \frac{1}{2}\right)$?

5. On a certain route into town, shuttle buses depart every 15 minutes from 06:30 until 07:30. The distance d, in kilometres, they travel can be described as a function of time, t, in hours, and represented by the equation d = f(t) = 60t.

If t = 0 at 06:30, write an equation which represents the distance travelled by:

- a) the second bus
- b) the third bus
- c) the last bus

The graph of the function y = f(x) passes through the point (4, 7). Under a transformation, the point (4, 7) is transformed to (6, 6). A possible equation for the transformed function is

A.
$$y - 1 = f(x + 2)$$

B.
$$y-2 = f(x+1)$$

C.
$$y + 1 = f(x - 2)$$

D.
$$y + 2 = f(x - 1)$$

Numerical 7. The function $f(x) = \sqrt{x} + 5$ is transformed by a translation of 2 units down and 4 units to the left. The transformed function passes through the point (20, y). To the nearest tenth, the value of y is _____.

> 8. The function $r(x) = \frac{1}{x+3}$ is transformed by a translation of 3 units up and 5 units to the right. The transformed function passes through the point (x, 7). The value of x to the nearest hundredth is _

Answer Key

1. a) vertical translation 1 unit down
 b) translation 3 units right
 d) translation 6 units left and 3 units down
 e) translation 3 units right and 2 units up
 f) translation 1 unit left and 1 unit up

2. a) $y = (x+2)^4$ b) y = 2|x+1|-3 c) $y = \frac{1}{\sqrt{x-3}} + 2$ 3. a) y = |x-3|+1 b) $y = (x-6)^2 - 10$ c) $y = \frac{1}{x-3} + 1$ d) y = f(x) + 4 e) y = f(x+6) + 4 f) y = f(x-1) - 2

4. a) vertical translation 4 units down b) horizontal translation 2 units right

c) horizontal translation 4 units left

5. a) $d = 60 \left(t - \frac{1}{4} \right)$ b) $d = 60 \left(t - \frac{1}{2} \right)$ c) d = 60(t - 1)

6. C 7. 7.9 8. 2.25

