Transformations Lesson #8: Expansions and Compressions about the x- or y-axis Part 2

Warm-Up

In the previous lesson we had the following note:

y = af(x) can be written as $\frac{1}{a}y = f(x)$.

Given the function y = f(x):

- replacing x with bx, $(i.e. x \rightarrow bx)$ describes a horizontal stretch about the y-axis. i.e. y = f(bx) describes a horizontal stretch.
- replacing y with $\frac{1}{a}y$, (i.e. $y \to \frac{1}{a}y$) describes a vertical stretch about the x-axis. i.e. $\frac{1}{a}y = f(x)$ or y = af(x) describes a vertical stretch.

In general, if $\frac{1}{a}y = f(bx)$ or y = af(bx), then for:

a > 1 there is a vertical expansion 0 < a < 1 there is a vertical compression a < 0 there is also a reflection in the x-axis b > 1 there is a horizontal compression 0 < b < 1 there is a horizontal expansion

b < 0 there is also a reflection in the v-axis

Write the equation of the image of:

- a) $y = x^2$ after a horizontal compression about the y-axis by a factor of $\frac{3}{4}$. $b = \frac{4}{3}$ $y = \left(\frac{4}{3}x\right)^2 \implies y = \frac{16}{9}x^2$
- b) $y = \sqrt{x} 3$ after a horizontal expansion by a factor of 4 about the y-axis and a vertical expansion by a factor of 2 about the x-axis. $Q = \frac{1}{2}$

 $y = 4(\sqrt{\frac{1}{2}} \times -3) = y = 4(\sqrt{\frac{1}{2}} \times -12)$

c) y = 3x + 7 after a vertical compression about the x-axis by a factor of $\frac{1}{3}$ and $q = \frac{1}{3}$ -f(z)a reflection in the x-axis.

 $y = -\frac{1}{3}(3x+7) \Rightarrow y = -1x - \frac{7}{3}$

Describe how the graph of the second function compares to the graph of the first function.

a)
$$y = f(x)$$

 $y = f\left(\frac{1}{2}x\right)$ $b = \frac{1}{2}$

b)
$$y = 2^x$$

$$y = 2^{3x} \qquad 0 = \frac{2}{3}$$

$$y = -2|x|$$
 $0 = -2$

a) y = f(x) b) $y = 2^x$ c) y = |x| $y = f\left(\frac{1}{2}x\right)$ $b = \frac{1}{2}$ $y = 2^{3x}$ b = 3 y = -2|x| a = -2 her exp by factor of 2 her comp by factor of $\frac{1}{3}$ vert exp by factor of 2 reflection in the x axis

d)
$$y = |x|$$

$$y = |-2x| \quad b = -\lambda$$
her comp by factor of $\frac{1}{2}$
reflection in the y-axis

e)
$$y = |x|$$

 $y = 2 |\frac{1}{3}x|$ a= 2 b= $\frac{1}{3}$
her eap by factor of 3

d)
$$y = |x|$$
 $y = |-2x|$
 $y = 2|\frac{1}{3}x|$
 $y =$

The function represented by the thick line is a stretch of the function represented by the thin line. Write an equation for each function represented by the thick line.

$$y = \frac{3}{x^2+1}$$

Vert factor-2 reflection in the xaxis

hor factor 2 $V_{1} = \left(\frac{1}{2}x^{2} - 4\right)\left(\frac{1}{2}x^{2}\right)\left(\frac{1}{2}x^{2}\right)$ 1 (2-8) 1 (x-4) 1 (x-12) 1 (x-8)(x-12)

A polynomial function has the equation P(x) = (x - 4)(x + 3)(x + 6). Determine the zeros and the y-intercept if the following transformations are applied.

$$\mathbf{a}) \quad y = -3P(x)$$

$$y = -3 \left[(x-4)(x+3)(x+6) \right]$$
Zero's $x-4=0$ $x+3=0$ $x+b=0$

$$x=4$$
 $x=-3$ $x=-6$

$$y = -3 \left[(0-4)(0+3)(0+6) \right]$$

$$-3(-72) = 216$$

b)
$$y = P\left(-\frac{1}{2}x\right)$$

 $y = \left(-\frac{1}{2}x - 4\right) \left(-\frac{1}{2}x + 3\right) \left(-\frac{1}{2}x + 6\right)$
 $2ero's -\frac{1}{2}x - 4 = 0 -\frac{1}{2}x + 3 = 0 -\frac{1}{2}x + 6 = 0$
 $(-2) -\frac{1}{2}x = 4^{+2} -\frac{1}{2}x = -3 -\frac{1}{2}x = -6$
 $x = -8$ $x = 6$ $x = 12$
 $y = (-\frac{1}{2}(0) - 4) \left(-\frac{1}{2}(0) + 3\right) \left(-\frac{1}{2}(0) + 6\right)$
 $= (-4)(3)(6) = -72$

Complete Assignment Questions #1 - #6

Assignment

- 1. Write the equation of the image of:
 - a) y = |x + 1| after a vertical compression about the x-axis by a factor of $\frac{7}{9}$
 - **b**) $y = 2^x$ after a horizontal expansion by a factor of 3 about the y-axis.
 - c) $y = \sqrt{x-2}$ after a vertical expansion about the x-axis by a factor of 4 and a reflection in the x-axis.
 - d) $y = \sqrt{x-2}$ after a horizontal expansion about the y-axis by a factor of 4 and a reflection in the y-axis.
 - e) $y = \sin x^{\circ}$ after a horizontal compression about the y-axis by a factor of $\frac{3}{4}$ and a vertical compression about the x-axis by a factor of $\frac{1}{2}$.
 - f) y = 2x 11 after a horizontal compression about the y-axis by a factor of $\frac{1}{3}$ and a reflection in the y-axis.

- g) $y = \frac{1}{x+3}$ after a horizontal expansion about the y-axis by a factor of 3, a vertical expansion about the x-axis by a factor of 2 and a reflection in the y-axis.
- **h**) $y = \frac{1}{x} + 3$ after a vertical compression about the x-axis by a factor of $\frac{1}{2}$, a horizontal compression about the y-axis by a factor of $\frac{1}{4}$, and a reflection in both the x-axis and y-axis.
- 2. Describe how the graph of the second function compares to the graph of the first function.

$$y = \sqrt{x}$$

$$y = \sqrt{\frac{1}{3}x}$$

$$\mathbf{b}) \ \ y = x^4$$

$$\frac{1}{4}y = x^4$$

c)
$$y = 5x + 10$$

 $y = 5\left(-\frac{1}{4}x\right) + 10$

$$\mathbf{d}) \ \ y = \cos x^{\circ}$$
$$y = 3\cos 2x^{\circ}$$

$$e) y = 5^x
 y = 5^{0.5x}$$

f)
$$y = 6x - x^2$$

 $y = 6(2x) - (2x)^2$

$$\mathbf{g}) \quad y = \frac{1}{x+1}$$
$$y = \frac{2}{x+1}$$

$$\mathbf{h}) \ \ y = \frac{1}{x+1}$$

$$3y = \frac{1}{x+1}$$

h)
$$y = \frac{1}{x+1}$$
 i) $y = \frac{1}{x+1}$ $y = -\frac{4}{2x+1}$

3. The function represented by the thick line is a stretch of the function represented by the thin line. Write an equation for each function represented by the thick line.

4. A polynomial function has the equation P(x) = (x - 5)(x - 2)(x + 1). Determine the zeros and the y-intercept if the following transformations are applied.

$$\mathbf{a}) \quad y = 4P(x)$$

b)
$$y = P(4x)$$

$$\mathbf{c}) \quad y = -\frac{1}{4}P(x)$$

$$\mathbf{d}) \ \ y = P\left(-\frac{1}{4}x\right)$$

5. A polynomial function has the equation $P(x) = x(x-2)^2$. Determine the zeros and the *y*-intercept if the following transformations are applied.

$$\mathbf{a}) \quad y = 7P(x)$$

$$\mathbf{b}) \ \ y = P\bigg(\frac{4}{3}x\bigg)$$

- Multiple Choice 6. How is the graph of $\frac{1}{4}y = x^2$ related to the graph of $y = x^2$?
 - A. $y = x^2$ has been expanded horizontally about the y-axis by a factor of 4.
 - **B.** $y = x^2$ has been compressed horizontally about the y-axis by a factor of $\frac{1}{4}$
 - C. $y = x^2$ has been expanded vertically about the x-axis by a factor of 4.
 - **D.** $y = x^2$ has been compressed vertically about the x-axis by a factor of $\frac{1}{4}$.

Answer Key

1. a)
$$y = \frac{7}{9} |x+1|$$

b)
$$y = 2^{\frac{1}{3}x}$$

$$\mathbf{c}) \quad y = -4\sqrt{x-2}$$

d)
$$y = \sqrt{-\frac{1}{4}x - 2}$$

$$\mathbf{e}) \quad y = \frac{1}{2} \sin \frac{4}{3} x^4$$

f)
$$y = -6x - 11$$

1. a)
$$y = \frac{7}{9} |x+1|$$
 b) $y = 2^{\frac{1}{3}x}$ c) $y = -4\sqrt{x-2}$ d) $y = \sqrt{-\frac{1}{4}x-2}$
e) $y = \frac{1}{2}\sin\frac{4}{3}x^{\circ}$ f) $y = -6x-11$ g) $y = \frac{2}{-\frac{1}{3}x+3}$ or $y = -\frac{6}{x-9}$ h) $y = \frac{1}{8x} - \frac{3}{2}$

$$\mathbf{h}) \ \ y = \frac{1}{8x} - \frac{3}{2}$$

- 2. a) horizontal expansion about the y-axis by a factor of 3
 - b) vertical expansion about the x-axis by a factor of 4
 - c) horizontal expansion about the y-axis by a factor of 4 and a reflection in the y-axis
 - d) vertical expansion about the x-axis by a factor of 3 and a horizontal compression about the y-axis by a factor of $\frac{1}{2}$
 - e) horizontal expansion about the y-axis by a factor of 2
 - f) horizontal compression about the y-axis by a factor of $\frac{1}{2}$
 - g) vertical expansion about the x-axis by a factor of 2
 - h) vertical compression about the x-axis by a factor of $\frac{1}{2}$
 - i) vertical expansion about the x-axis by a factor of 4, horizontal compression about the y-axis by a factor of $\frac{1}{2}$, and a reflection in the x-axis

3. a)
$$y = 3P(x)$$
 b) $y = 2P(2x)$

b)
$$y = 2P(2x)$$

c)
$$y = 3|x| - 6$$

d)
$$y = 3 \left| \frac{1}{2}x \right| - 6$$

$$e) \quad y = \frac{1}{4}x^2$$

e)
$$y = \frac{1}{4}x^2$$
 f) $y = (x+4)(x-2)(x-6)$ g) $y = -P\left(\frac{1}{3}x\right)$ h) $y = \frac{1}{3}f(-x)$

$$\mathbf{g}$$
) $y = -P\left(\frac{1}{3}x\right)$

$$\mathbf{h}) \quad y = \frac{1}{3} f(-x)$$

4. a) zeros:
$$-1, 2, 5$$
 b) zeros: $-\frac{1}{4}, \frac{1}{2}, \frac{5}{4}$ c) zeros: $-1, 2, 5$ d) zeros: $4, -8, -20$

y-intercept: 40 y-intercept: 10 y-intercept: $-\frac{5}{2}$ y-intercept: 10

5. a) zeros:
$$0, 2$$
 y-intercept = 0

5. a) zeros: 0, 2 y-intercept = 0 b) zeros: 0,
$$\frac{3}{2}$$
 y-intercept = 0