Exponential and Logarithmic Functions Lesson #2: Solving Equations Involving Exponents

Warm-Up #1 Review

Simplify
$$(9^{2x+3} \div 27^{3x-1}) \times 81^{x-1}$$
 by converting each term to a common base.

$$= \left(3^{2(2x+3)} \div 3^{3(3x-1)}\right) \times 3^{4(2-1)} = 3^{4x-4} = 3 \times 3^{4x-4} = 3^{-5x+9} \times 3^{4x-4} = 3^{-1x+5} =$$

Solving Equations with Rational Exponents

Use the following procedure to solve an equation where the exponent is rational:

- Raise both sides to the reciprocal power of the exponent
- Simplify and solve for the variable.

Solve for *x* in the following.

Solve for x in the following.
a)
$$x_{\frac{3}{4}x^{-\frac{3}{4}}}^{-\frac{4}{3}} = 81_{\frac{3}{4}x^{-\frac{3}{4}}}$$
b) $(3x - 5)^{\frac{3}{2}y^{\frac{2}{2}}} = \frac{27}{3}$

$$x - 5 = 3\sqrt{\frac{37}{4}}$$

$$x - 8\sqrt{\frac{3}{4}} = \frac{1}{\sqrt{81}} = \frac{1}{3^3} = \frac{1}{27}$$

$$3x - 5 = 3^2$$

$$3x - 5 = 9$$

b)
$$(3x-5)^{\frac{1}{2}} \stackrel{?}{=} 27^{-73}$$

 $3x-5 = 3\sqrt{27}$
 $3x-5 = 3^2$
 $3x-5 = 9$

$$3x-5+5=9+5$$

$$3x=14$$

$$3=14$$

$$x=14 \text{ or } 4=3$$

Solving Exponential Equations with a Common Base

An **exponential equation** is an equation where the <u>variable</u> is in the exponent.

Use the following procedure to solve an equation where the variable is in the exponent:

- Write both sides of the equation in the same base
- Equate the exponents on both sides of the equation
- Determine the value of the variable.

Solve for x in

$$2x+3=7$$
 $2x+3-3=7-3$ $2-2=3$

$$\frac{2}{1+3-3} = \frac{1-3}{2}$$

$$\chi^{2-2} = \chi^{3}$$

$$\chi^{2-2} = 3$$

$$+2 +2$$

c)
$$3^{5x-1} = 81^{3x}$$

$$5x-1 = 12x$$

$$5x-1 = 12x$$

$$-5x = -5x$$

$$-1 = \frac{7x}{7}$$

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

98 Exponential and Logarithmic Functions Lesson #2: Solving Equations Involving Exponents

d)
$$27^{x-2} = \frac{1}{81^{x+3}}$$
 e) $\begin{vmatrix} 3(x-2) \\ -4(x+3) \end{vmatrix}$ $= \begin{vmatrix} -4(x+3) \\ -4(x+3) \end{vmatrix}$ $= \begin{vmatrix} -4x-12 \\ -4x \end{vmatrix}$ $+4x$ $= \begin{vmatrix} -4x-12 \\ +4x \end{vmatrix}$ $= \begin{vmatrix} -12 \\ +6 \end{vmatrix}$ $= \begin{vmatrix} -7x \\ -7 \end{vmatrix}$ $= \begin{vmatrix} -8 \\ -7 \end{vmatrix}$ $= \begin{vmatrix} -8 \\ -7 \end{vmatrix}$ $= \begin{vmatrix} -8 \\ 7 \end{vmatrix}$ or $\begin{vmatrix} 1 \\ 7 \end{vmatrix}$

e)
$$\left(\frac{125}{216}\right)^{\frac{-x}{4}} = \left(\frac{6}{5}\right)^{3x-3}$$

$$\left(\frac{125}{216}\right)^{\frac{-x}{4}} = \left(\frac{6}{5}\right)^{3x-3}$$

$$\frac{3}{4}x^{-\frac{1}{2}x} = \frac{3x-3}{-3x}$$

$$\frac{3}{4}x - \frac{12y}{4} = -3$$

$$\left(-\frac{4}{9}\right)^{-\frac{9}{4}x} = -3\left(-\frac{4}{9}\right)$$

$$X = \frac{12}{9} = \frac{4}{3} = \left|\frac{1}{3}\right|$$

Complete Assignment Questions #1 - #8

Assignment

1. Simplify.
a)
$$49^{x-1} \times 7^{2x-3}$$

b)
$$216^x \div (1296^{5x-4} \times 36^{x+5})$$

c)
$$64^{3x} \times 128^{x-1} \div (32^{2x+3} \div 8^{4x-1})$$

2. Solve for x.

a)
$$x^{\frac{1}{2}} = 5$$

b)
$$x^{-\frac{1}{2}} = 5$$

c)
$$x^{\frac{1}{3}} = -5$$

a)
$$x^{\frac{1}{2}} = 5$$
 b) $x^{-\frac{1}{2}} = 5$ c) $x^{\frac{1}{3}} = -5$ d) $4x^{-\frac{2}{3}} = 16$

3. Solve for x.

a)
$$2^x = 16\sqrt{2}$$

b)
$$2^{-x} = 64$$

c)
$$9^{3x+1} = 27^{3x}$$

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

4. Solve for x.

$$\mathbf{a}) \ \left(\frac{4}{7}\right)^{5x} = \left(\frac{64}{343}\right)^{2x-1}$$

b)
$$\left(\frac{125}{216}\right)^{-\frac{x}{2}} = \left(\frac{6}{5}\right)^{3x+2}$$

c)
$$49\left(\frac{7}{12}\right)^{2x} = 144$$

$$\mathbf{d}) \left(\frac{9}{4}\right)^{x+3} = \left(\frac{8}{27}\right)^{-5}$$

e)
$$2^{x-1} = (128^x)(2^x)$$

f)
$$2(6^{2x}) - 74(6^x) + 72 = 0$$

(Hint: Write as a quadratic equation with the variable as 6^x)

100 Exponential and Logarithmic Functions Lesson #2: Solving Equations Involving Exponents

$$\mathbf{g}) \ \left(\frac{1}{4}\right)^{x-12} = (2)(32)^{2x+1}$$

h)
$$\sqrt[3]{\frac{27^{2x-1}}{3^{x+1}}} = 9$$

Multiple Choice 5. If $4^{2x-7} = \frac{1}{64}$, then the value of \sqrt{x} is

A. 2 B. $\sqrt{2}$ C. $\sqrt{5}$ D. $\frac{3}{2}$

Numerical Response 6. The solution to the equation $25^{x+1} = 5^{3(x-1)}$ to the nearest tenth, is x =_____.

7. The solution to the equation $\left(\frac{1}{8}\right)^{x-3} = (2)(16)^{2x+1}$, to the nearest hundredth, is x =____

8. The solution to the equation $8^{2x-1} = 16$, to the nearest tenth, is x =_____.

1 a)
$$7^{4x-5}$$

b)
$$6^{-19x+6}$$

c)
$$2^{27x-25}$$

2. a)
$$x = 25$$

b)
$$x = \frac{1}{25}$$

c)
$$x = -125$$

d)
$$x = \frac{1}{5}$$

Answer Key
1. a)
$$7^{4x-5}$$
 b) 6^{-19x+6} c) 2^{27x-25}
2. a) $x = 25$ b) $x = \frac{1}{25}$ c) $x = -125$ d) $x = \frac{1}{8}$
3. a) $x = \frac{9}{2}$ b) $x = -6$ c) $x = \frac{2}{3}$
4. a) $x = 3$ b) $x = -\frac{4}{3}$ c) $x = -1$ d) $x = \frac{9}{2}$ e) $x = -\frac{1}{7}$ f) $x = 0, x = 2$ g) $x = \frac{3}{2}$ h) $x = 2$ 5. B
6. 5.0
7. 0.36
8. 1.3

b)
$$x = -6$$

c)
$$x = \frac{2}{3}$$

4. a)
$$x = 3$$

b)
$$x = -\frac{4}{3}$$

c)
$$x = -1$$

d)
$$x = \frac{9}{2}$$

e)
$$x = -\frac{1}{7}$$

f)
$$x = 0, x = 2$$

g)
$$x = \frac{3}{2}$$

$$\mathbf{h}) \; x = 2$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.