Exponential and Logarithmic Functions Lesson #4: The Logarithmic Function

Warm-Up #1

In Lesson 3, assignment question 6d), we were asked to find the inverse of $y = b^x$ and solve for y. In this lesson we will learn how to do this.

Logarithmic Function

A **logarithmic function** is the inverse of an exponential function. Remember, to find the inverse of a function we must switch x and y and then solve for y. But for the inverse of an exponential function it is difficult to solve for y. For example, to get the inverse of $y = 2^x$ the first step is $x = 2^y$, but it is difficult to solve for y. To solve for y we introduce the logarithmic function as follows:

$$x = 2^y$$
 \Rightarrow $y = \log_2 x$

Therefore we write $y = \log_b x$ rather than $x = b^y$ to express the inverse of $y = b^x$.

The **logarithmic function** with base b has the equation

$$y = \log_b x$$
, $x > 0$, $x \in R$, $b > 0$ and $b \ne 1$.

Warm-Up #2

Comparing the Graphs of $y = 2^x$ and $y = \log_2 x$

a) Construct the graph of the exponential function $y = 2^x$ and its inverse $y = \log_b x$, (or $x = 2^y$), $x, y \in R$, using the grid and tables of values provided below.

Graph of $y = 2^x$								
x	-3	-2	-1	0	1	2	3	4
y	1/8	1/4	1/2	1	2	4	8	16

Graph of
$$y = \log_2 x$$
, $(x = 2^y)$

x	78	74	72	-	ત	4	B	9
y	-3	-2	-1	0	1	2	3	4

b) Complete the table below

Function	Domain	Range	x-intercept	y-intercept	Asymptote
$y = 2^x$	2x 126R3	2y 14>0,46R3	None	1	y =6
$y = \log_2 x$	{x x >0, x επ}	24/46R3	1	None	2=0

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

c) Use the table of values to complete the following.

Logarithmic Form	Exponential Form
$\log_2 8 = 3$	$8 = 2^3$
$log_24 =$	4 = 2 ²
log ₂ 2 =	2 = 21
$log_2 1 =$	1 = 2°
$\log_2 \frac{1}{2} =$	$\frac{1}{2} = \lambda^{-1}$
$\log_2 \frac{1}{4} =$	$\frac{1}{4} = 2^{-2}$
$\log_2 \frac{1}{8} =$	$\frac{1}{8} = \lambda^{-3}$

- The logarithms are the exponents in the function $y = 2^x$.
- Since the logarithmic function $y = \log_b x$ is only defined for positive values of x, the logarithm of a negative number cannot be determined.

Characteristics of the Graph of the Logarithmic Function $y = \log_b x$

- The x intercept is 1.
- There is no y-intercept.
- The y-axis is a vertical asymptote with equation x = 0.
- Domain = $\{x \mid x > 0, x \in R\}$.
- Range = $\{y \mid y \in R\}$.
- $y = \log_b x$ is equivalent to $x = b^y$, where x > 0 and b > 0, $b \ne 1$.
- b is the base of both the logarithmic function and the exponential function.

- The logarithmic equation $y = \log_b x$ can be expressed in exponential form as $x = b^y$.
- The exponential equation $y = b^x$ can be expressed in logarithmic form as $\log_b y = x$.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Convert each of the following from logarithmic form to exponential form.

$$\mathbf{a)} \quad \log_7 x = 4$$

b)
$$\log_{10} 1000 = 3$$

c)
$$m = \log_t E$$

$$\chi = 7^4$$

$$10^3 = 1000$$

$$d) \quad \log_{x} a = b^{d}$$

$$\chi^{b^{d}} = 0$$

e)
$$\frac{5}{4} = \frac{4\log_b 6}{4}$$
 $\frac{5}{4} = \log_b 6$ $\frac{5}{4} = 6$

Convert each of the following from exponential form to logarithmic form.

b)
$$2^{-3} = \frac{1}{8}$$

 $-3 = \log_2(\frac{1}{8})$ c) $e^d = f$
 $d = \log_2(f)$

c)
$$e^{d} = f$$

$$d = \log_{e}(f)$$

$$x^{2y} = 5$$

$$2y = \log_{\chi} 5$$

e)
$$a = (2x + 4)^{-1}$$

 $- \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 1 \\ 2x + 4 \end{vmatrix}$

Solve for y.

a)
$$\log_3 81 = y$$

 $81 = 3^9$
 $3^4 = 3^9$
 $4 = 4$

b)
$$y = \log_5 \sqrt{125}$$

 $5^9 = \sqrt{129}$
 $5^9 = 5^{\frac{3}{2}}$
 $y = \frac{3}{2}$

c)
$$\underline{y} = 2\log_8 51$$

 $q^{\frac{y}{2}} = 512$
 $(\chi^3)^{\frac{y}{3}} = \chi^9$

c)
$$y = 2\log_8 512$$
 $(\frac{2}{3})\frac{39}{3} = 9(\frac{2}{3})$
 $8^{\frac{1}{3}} = 512$ $y = \frac{18}{3} = 6$
 $(\frac{3}{3})^{\frac{1}{3}} = 2^9$

a) What is the value of $log_b 1$? Explain.

$$\begin{vmatrix} \log_{b} 1 = y & b^{9} = b^{6} \\ b^{9} = 1 & y = 0 \end{vmatrix}$$
 So $\begin{vmatrix} \log_{b} 1 = 0 \\ \end{vmatrix}$

b) What is the value of $\log_b b$? Explain.

Evaluate.

a)
$$\log_4 64 = 9$$

 $4^9 = 6^4$
 $4^9 = 4^3$

b)
$$\log_2\left(\frac{1}{32}\right) = y$$

$$y = \frac{1}{32}$$

$$y = 2^{-5}$$

$$y = -5$$

c)
$$5(og_525) = y$$

 $5^{1} = 15$
 $5^{1} = 5^{2}$
 $y = 2$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

_____.i)Interchange Xfory Find the inverse of the following equations. Answer in the form y =____

a)
$$y = \log_3 x$$
 i) $\chi = \log_3 y$

$$\mathbf{b}) \quad y = 8^x \ \mathbf{i}) \quad \mathbf{x} = 8^y$$

Complete Assignment Questions #1 - #9

Warm-Up #3

We have seen how to change forms between the exponential form $y = b^x$ and the logarithmic form $\log_b y = x$.

We now consider how to write the exponential form $y = ab^x$ in logarithmic form.

This can be done using the following procedure:

1. Write the exponential form
$$y = ab^x$$
 as $\frac{y}{a} = b^x$.

2. Change
$$\frac{y}{a} = b^x$$
 to logarithmic form.

The logarithmic form of $y = ab^x \left(\text{or } \frac{y}{a} = b^x \right)$ is $\chi = \left(\frac{y}{a} \right)$

Base "b" to exponent "x" equals (4)

Change each of the following from exponential form to logarithmic form.

$$\chi = \log_3(\frac{y}{2})$$

$$\frac{y}{2} = \frac{2(3^{x})}{2}$$

$$\frac{y}{2} = 3^{x}$$

$$\chi = \log_{3}(\frac{y}{2})$$

$$\frac{h}{7} = (4)^{k}$$

$$\chi = \log_{4}(\frac{h}{7})$$

$$\chi = \log_{30}(5y)$$

$$\chi = \log_{30}(5y)$$

$$\frac{d}{3}y = \frac{2.3}{3.2}(10)^{x}$$

$$\frac{2y}{3} = 10^{2x} \qquad x = \log \frac{(2y)}{3}$$

$$\chi = \log \left(\frac{2y}{3} \right)$$

e)
$$\frac{t}{r} = \frac{r(s)^p}{r}$$

$$\frac{1}{r} = S$$

$$\frac{1}{r} = S$$

$$\frac{1}{r} = S$$

$$\frac{1}{r} = S$$

$$\rho = \log_s \left(\frac{t}{r}\right)$$

Change each of the following from logarithmic form to exponential form $y = ab^x$.

- a) $\log_7\left(\frac{y}{3}\right) = x$ b) $\log_{10}\left(\frac{y}{4}\right) = x$ c) $\log_5(7y) = x$ d) $\log_e\left(\frac{y}{5}\right) = x$ (3) $\frac{y}{3} = \frac{1}{7}x$ (4) $\log_2\left(\frac{y}{5}\right) = x$ (5) $\frac{y}{5} = \log_2\left(\frac{y}{5}\right) = x$ $\log_5(7y) = x$ d) $\log_e\left(\frac{y}{5}\right) = x$ (5) $\frac{y}{5} = \log_2\left(\frac{y}{5}\right) = x$ $\log_5(7y) = x$ d) $\log_e\left(\frac{y}{5}\right) = x$ $\log_5(7y) = x$ d) $\log_e\left(\frac{y}{5}\right) = x$ $\log_5\left(\frac{y}{5}\right) = x$ $\log_5\left(\frac{y}{5$

Complete Assignment Questions #10 - #16

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Assignment

1. Complete the following from the graphs of $y = b^x$ and $y = \log_b x$, b > 0.

Function	Domain	Range	x-intercept	y-intercept	Asymptote
$y = b^x$					
$y = \log_b x$					

- 2. Why does x have to be greater than zero in the domain of $y = \log_b x$, and not in $y = b^x$, b > 0?
- 3. Express each of the following in logarithmic form.

a)
$$5^2 = 25$$

b)
$$3^0 = 1$$

c)
$$2^{-4} = \frac{1}{16}$$

$$\mathbf{d}) \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

e)
$$b^d = e$$

4. Express each of the following in exponential form.

a)
$$\log_3 9 = 2$$

b)
$$\log_5 625 = 4$$

c)
$$\log_4 \frac{1}{4} = -1$$

d)
$$\log_a f = i$$

e)
$$\log_{10}0.001 = -3$$

- 5. Evaluate.
 - a) log₄64
- **b**) $\log_5\sqrt{5}$
- c) log₇49

- **d**) log₁₀0.001
- e) $\log_8 8^{-4}$
- f) $\log_2 \sqrt{\frac{1}{512}}$

 \mathbf{g}) $\log_b 1$

- \mathbf{h}) $\log_c c$
- i) $\log_x x^z$

6. Complete the following table:

Logarithmic Form	Exponential Form	Value of x
$\log_4 x = 2$		
	$7 = 49^x$	
$\log_{x}\left(\frac{1}{64}\right) = -3$		
	$x + 2 = 4^2$	
$\log_{32} x = \frac{1}{5}$		
	$\frac{1}{2} = 16^x$	

7. Is $y = \log_3 x$ the logarithmic form of $y = 3^x$? Explain your answer.

8. Solve for x.

a)
$$\log_{x} 125 = 3$$

b)
$$\log_{125} 5 = x$$

b)
$$\log_{125} 5 = x$$
 c) $\log_4 x = -8$

9. Find the inverse of the following equations. Answer in the form $y = \underline{\hspace{1cm}}$.

a)
$$y = 3^x$$

$$\mathbf{b}) \ \ y = \log_4 x$$

c)
$$y = 3x^2 + 2$$

d)
$$y = \log_3 x$$

e)
$$y = 20^x$$
 f) $x = 20^y$

f)
$$x = 20^y$$

10. Change each of the following from exponential form to logarithmic form.

a)
$$y = 3(2)^x$$

a)
$$y = 3(2)^x$$
 b) $y = 10(3)^x$

c)
$$7y = 30^x$$

d)
$$y = \frac{5}{6}(10)^x$$
 e) $a = b(c)^d$

$$e) \quad a = b(c)^d$$

$$\mathbf{f)} \quad 2y = 7\left(\frac{3}{4}\right)^x$$

11. Change each of the following from logarithmic form to exponential form $y = ab^x$.

a)
$$\log_8\left(\frac{y}{9}\right) = x$$
 b) $\log_{20}(6y) = x$ c) $\log_e\left(\frac{y}{5}\right) = x$ d) $\log_{10}(0.5y) = x$

b)
$$\log_{20}(6y) = x$$

c)
$$\log_e\left(\frac{y}{5}\right) = x$$

d)
$$\log_{10}(0.5y) = x$$

12. Solve the following equations for *y*.

$$\mathbf{a)} \quad 3 = \log_2\left(\frac{y}{4}\right)$$

a)
$$3 = \log_2\left(\frac{y}{4}\right)$$
 b) $\log_2\left(\frac{y}{5}\right) = -3$ c) $2 = \log_4 32y$

c)
$$2 = \log_4 32y$$

13. If $\log_4(4096x) = 64$, then the value of x is

A.
$$4^{\frac{32}{3}}$$

D.
$$4^{32}$$

14. If $\log_2 x = 3$ and $\log_2 t = x$, then t equals

Numerical Response 15. If $\log_b 81 = \frac{2}{3}$, then the value of b is to the nearest whole number is: _____.

Numerical Response 16. If $\log_a b = 4.5$ and $\log_a c = 3.7$, then the value of $\log_a \left(\frac{b}{c}\right)$ to the nearest tenth is: _____.

Answer Key

	Function	Domain	Range	x-intercept	y-intercept	Asymptote
1	$y = b^x$	$x \in \Re$	$\{y\big y>0,y\in\Re\}$	none	1	y = 0
	$y = \log_b x$	$\{x\big x>0,x\in\Re\}$	$y \in \Re$	1	none	x = 0

- 2. $y = \log_b x \implies x = b^y$; b^y must be greater than zero, so x must be greater than zero. $y = b^x$ can be determined for all values of x positive, negative, or zero.
- 3. a) $\log_5 25 = 2$ b) $\log_3 1 = 0$ c) $\log_2 \left(\frac{1}{16}\right) = -4$ d) $\log_{\frac{1}{2}} \left(\frac{1}{16}\right) = 4$ e) $\log_b e = d$ 4. a) $3^2 = 9$ b) $5^4 = 625$ c) $4^{-1} = \frac{1}{4}$ d) $a^i = f$ e) $10^{-3} = 0.001$
- 5. a) 3 b) $\frac{1}{2}$ c) 2 d) -3 e) -4 f) $\frac{-9}{2}$ g) 0 h) 1 i) z

Logarithmic Form	Exponential Form	Value of x
$log_4x = 2$	$x = 4^2$	<i>x</i> = 16
$\log_{49} 7 = x$	7 = 49 ^x	$x = \frac{1}{2}$
$\log_x \left(\frac{1}{64}\right) = -3$	$\frac{1}{64} = x^{-3}$	<i>x</i> = 4
$\log_4(x+2) = 2$	$x + 2 = 4^2$	x = 14
$\log_{32} x = \frac{1}{5}$	$x = 32^{\frac{1}{5}}$	<i>x</i> = 2
$\log_{16}\left(\frac{1}{2}\right) = x$	$\frac{1}{2} = 16^x$	$x = -\frac{1}{4}$

- 7. No, it is the inverse. The log form of $y = 3^x$ is $x = \log_3 y$.

- 7. No, it is the inverse. The log form of y = 5 is $x = \log_3 y$. 8. a) 5 b) $\frac{1}{3}$ c) 0.0000153 9. a) $y = \log_3 x$ b) $y = 4^x$ c) $y = \pm \sqrt{\frac{x-2}{3}}$ d) $y = 3^x$ e) $y = \log_{20} x$ f) $y = 20^x$ 10. a) $\log_2 \left(\frac{y}{3}\right) = x$ b) $\log_3 \left(\frac{y}{10}\right) = x$ c) $\log_{30}(7y) = x$
- d) $\log_{10}\left(\frac{6y}{5}\right) = x$ e) $\log_c\left(\frac{a}{b}\right) = d$ f) $\log_{\frac{3}{4}}\left(\frac{2y}{7}\right) = x$
- 11. a) $y = 9(8)^x$ b) $y = \frac{1}{6}(20)^x$ c) $y = 5(e)^x$ d) $y = 2(10)^x$ 12. a) 32 b) $\frac{5}{8}$ c) $\frac{1}{2}$ 13. B 14. C 15. 729

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

