## Trigonometry - Functions and Graphs Lesson #10: Reciprocal and Absolute Value Trigonometric Functions

Warm-Up | Review of Reciprocal Functions

Recall the properties of reciprocal functions by completing the following:

- 1. When f(x) = 0, the graph of  $y = \frac{1}{f(x)}$  may have a Vertical asymptote
- When f(x) = 1, 1/f(x) = 1. When f(x) = -1, 1/f(x) = -1.
  The invariant points for a reciprocal transformation can be found where the lines
  - $y = \pm 1$  intersect the graphs of f(x) and  $\frac{1}{f(x)}$ .
- 3. When f(x) increases over an interval,  $\frac{1}{f(x)}$  <u>decreases</u> over the same interval.
  - When f(x) decreases over an interval,  $\frac{1}{f(x)}$  \_\\\\(\text{VCTELGE6}\) over the same interval.
- **4.** When f(x) approaches zero,  $\frac{1}{f(x)}$  approaches  $\pm \infty$  and the graph of  $\frac{1}{f(x)}$  approaches a <u>Vertical</u> asymptote.
  - When f(x) approaches  $\pm \infty$ ,  $\frac{1}{f(x)}$  approaches zero and the graph of  $\frac{1}{f(x)}$  approaches a herizontal asymptote.



- Remember:  $\sin^{-1} x \operatorname{does} \mathbf{NOT} \operatorname{mean} \frac{1}{\sin x}$ .  $\sin^{-1} x \operatorname{represents} \operatorname{the} \operatorname{inverse} \operatorname{of} \operatorname{the}$ function  $\sin x$ . The reciprocal of  $\sin x$  is  $\csc x$ .
- The above properties can be used as a general aid to sketch the reciprocal trigonometric functions.

## Sketching the Graph of a Reciprocal Trigonometric Function

Use the following general procedure to sketch the graph of a reciprocal trigonometric function.

- 1. Sketch the vertical asymptotes.
- 2. Mark the invariant points.
- 3. Where y approaches zero on the original graph, y approaches positive or negative infinity on the reciprocal graph.



The graph of  $y = \sin x$ ,  $-2\pi \le x \le 2\pi$  is shown.

a) Graph y = csc x, the reciprocal of y = sin x, using the properties on the previous page.



c) List the invariant points.

$$\left(\frac{1}{2}\right)^{-1}\left(\frac{1}{2}\right)^{-1}\left(\frac{1}{2}\right)^{-1}\left(\frac{1}{2}\right)^{-1}$$



|                                  | 2  |          | / |                  |
|----------------------------------|----|----------|---|------------------|
|                                  | 1  | $\times$ |   |                  |
| $\frac{\pi}{2}$ $\frac{3\pi}{2}$ |    | π<br>2   |   | $\frac{3\pi}{2}$ |
|                                  | 2  |          |   |                  |
|                                  | -3 |          |   |                  |

| Function     | Domain      | Range        |
|--------------|-------------|--------------|
| $y = \sin x$ | XER         | -14441 , yer |
| $y = \csc x$ | I + nT ,nEI | 44-1421,4612 |



Use a graphing calculator to:

a) Graph 
$$y = \csc x$$
 and  $y = \csc 2x$ .  $= \left(\frac{1}{\sin(x)}\right)$   $= \left(\frac{1}{\sin(x)}\right)$ 

- b) State an appropriate graphing calculator window where x is in radians.
- c) Complete the table for  $x \in \Re$ .

| Function      | Domain      | Range           | Period    | Equation of<br>Asymptotes |
|---------------|-------------|-----------------|-----------|---------------------------|
| $y = \csc x$  | X + nm, neI | y 4-1 's y 2)   | 211       | X=nII, neI                |
| $y = \csc 2x$ | X + NI NEI  | y = - 1 ; y > 2 | 211,211=1 | X=nT net                  |

- d) Complete the following statements based on your observations in a), b), c).
  - i) The graph of  $y = \csc 2x$  is a transformation of the graph of  $y = \csc x$  by a factor of  $\frac{1}{2}$  about the  $\frac{1}{2}$  axis.
  - ii) Compared to the asymptotes of  $y = \csc x$ , the asymptotes of the graph of  $y = \csc 2x$  are  $\frac{1}{2}$  as frequent.

Warm-Up #2

Review of Absolute Value Functions

Recall the properties of absolute value functions by completing the following:

- When  $f(x) \ge 0$ , (i.e. the graph of y = f(x) is above the x-axis), the graph of y = |f(x)| is \_\_identical\_\_\_\_ to the graph of y = f(x).
- When  $f(x) \le 0$ , (i.e. the graph of y = f(x) is below the x-axis), the graph of y = |f(x)| is a replication of the graph of y = f(x) in the x-axis.



The graph of  $y = \cos x$ ,  $-2\pi \le x \le 2\pi$  is shown.

- a) Sketch the graph of  $y = |\cos x|$
- **b**) State the domain and range of  $y = |\cos x|$ .

D: {x | x e R} R: {y | 0 < y < 1, y e R}



Complete Assignment Questions #1 - #12

## **Assignment**

- 1. The graph of  $y = \cos x$ ,  $-2\pi \le x \le 2\pi$  is shown.
  - a) Graph  $y = \sec x$ , the reciprocal of  $y = \cos x$ .
  - **b**) State where  $\sec x$  is undefined.
  - c) List the invariant points.
  - **d**) Complete the table for  $x \in \Re$ .

|          |   | 2 |   |                        |
|----------|---|---|---|------------------------|
|          |   |   |   |                        |
| 27 33 -7 | 1 | 1 | 7 | $\frac{\sqrt{\pi}}{1}$ |

| Function     | Domain | Range |
|--------------|--------|-------|
| $y = \cos x$ | 8.     | H     |
| $y = \sec x$ |        |       |

- 2. The graph of  $y = \tan x$ ,  $-\frac{3\pi}{2} \le x \le \frac{3\pi}{2}$  is shown.
  - a) Graph  $y = \cot x$ , the reciprocal of  $y = \tan x$ .
  - **b**) State the equations of the asymptotes of  $y = \cot x$ .



- c) List the invariant points.
- **d**) Complete the table for  $x \in \Re$ .

| Function     | Domain | Range |
|--------------|--------|-------|
| $y = \tan x$ |        |       |
| $y = \cot x$ |        |       |

- 3. Use a graphing calculator to:
  - a) Graph  $y = \csc x$  and  $y = \csc \left(x + \frac{\pi}{4}\right)$
  - b) State an appropriate graphing calculator window in radians.
  - c) Complete the table for  $x \in \Re$ .

| Function                                 | Domain | Range | Period | Equation of<br>Asymptotes |
|------------------------------------------|--------|-------|--------|---------------------------|
| $y = \csc x$                             |        |       |        |                           |
| $y = \csc\left(x + \frac{\pi}{4}\right)$ |        |       |        |                           |

- 4. Use a graphing calculator to:
  - a) Graph  $y = \sec x$  and  $y = \sec 3x$
  - b) State an appropriate graphing calculator window in radians.
  - c) Complete the table for  $x \in \Re$ .

| Function      | Domain | Range | Period | Equation of<br>Asymptotes |
|---------------|--------|-------|--------|---------------------------|
| $y = \sec x$  |        |       |        |                           |
| $y = \sec 3x$ |        |       |        |                           |

- 5. The graph of  $y = 2 \sin x$ ,  $-2\pi \le x \le 2\pi$  is shown.
  - a) Graph the reciprocal of  $y = 2 \sin x$ .
  - **b**) State the equation of the reciprocal function.



- **6.** The graph of the function  $y = \sec 2x$  is shown.
  - a) Graph the reciprocal of  $y = \sec 2x$ .
  - b) State the equation of the reciprocal function.



7. Sketch the following graphs

a) 
$$y = |\sin x|$$



**b**) 
$$y = |\tan x|$$



8. The graph represents a reciprocal trigonometric function after a single transformation. Determine the equation of each graph. Verify with a graphing calculator.



Multiple 9. Which of the following describes the asymptotes for  $y = \sec x$ ?

A. 
$$x = n\pi$$
,  $n \in I$ 

$$\mathbf{B.} \quad x = \frac{\pi}{2} + n\pi, \ n \in I$$

C. 
$$x = 2n\pi$$
,  $n \in I$ 

**D.** 
$$x = \frac{\pi}{2} + 2n\pi, \ n \in I$$

- 10. The minimum positive value of y on the graph of  $y = \csc \frac{1}{2}x$  is
  - A.
  - 1 B.
  - C. 2
  - impossible to determine

11. The graph of  $y = \sec 2x$  is a transformation of the graph of  $y = \csc 2x$  by a horizontal translation of

A.  $\frac{\pi}{2}$  radians left B.  $\frac{\pi}{2}$  radians right C.  $\frac{\pi}{4}$  radians left D.  $\frac{\pi}{4}$  radians right



The graph of  $y = 4\sin x$  and its reciprocal are drawn. If the reciprocal graph has equation  $y = k\csc x$ , then the value of k to the nearest hundredth is

13. The maximum value, to the nearest tenth, of the function  $f(x) = |\cos x - 2|$  is \_\_\_\_\_.

## Answer Key

b)  $x = -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}$  c)  $(-2\pi, 1), (\pi, -1), (0, 1), (\pi, -1), (2\pi, 1)$ 



d) see table below

| Function     | Domain                                            | Range                                                               |
|--------------|---------------------------------------------------|---------------------------------------------------------------------|
| $y = \cos x$ | $x \ominus \Re$                                   | -1 ≤ y ≤ 1, y∈R                                                     |
| $y = \sec x$ | $x \neq \frac{\pi}{2} + n\pi, n \in I, x \in \Re$ | $y \le -1$ and $y \ge 1$ , $y \in \Re$ or $ y  \ge 1$ , $y \in \Re$ |

see graph below





| <b>c</b> ) | $\left(-\frac{5\pi}{4}, -1\right)$ | $\left(-\frac{3\pi}{4}, 1\right)$ | $,\left(-\frac{\pi}{4},-1\right)$ | $,\left(\frac{\pi}{4},1\right),$ | $\left(\frac{3\pi}{4}, -1\right)$ | $\left(\frac{5\pi}{4},1\right)$ |
|------------|------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|---------------------------------|
|------------|------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|---------------------------------|

See table below

| Function     | Domain                                            | Range |
|--------------|---------------------------------------------------|-------|
| $y = \tan x$ | $x \neq \frac{\pi}{2} + n\pi, n \in I, x \in \Re$ | y∈n   |
| $y = \cot x$ | $x \neq n\pi, n \in I, x \in \Re$                 | y∈R   |

3. b) answers may vary

| Function                                 | Domain                                            | Range                                  | Per | Asymptotes                        |
|------------------------------------------|---------------------------------------------------|----------------------------------------|-----|-----------------------------------|
| $y = \csc x$                             | $x \neq n\pi, n \in I, x \in \Re$                 | $y \le -1$ and $y \ge 1$ , $y \in \Re$ | 2π  | $x = n\pi, n \in I$               |
| $v = \csc\left(x + \frac{\pi}{4}\right)$ | $x \neq n\pi - \frac{\pi}{-}, n \in I, x \in \Re$ | $y \le -1$ and $y \ge 1$ , $y \in \Re$ | 2π  | $x = n\pi - \frac{\pi}{4}, n \in$ |

4. b) answers may vary

c)

| Function      | Domain                                                      | Range                                  | Per              | Asymptotes                                    |
|---------------|-------------------------------------------------------------|----------------------------------------|------------------|-----------------------------------------------|
| $y = \sec x$  | $x \neq \frac{\pi}{2} + n\pi,  n{\in}I,  x{\in}\Re$         | $y \le -1$ and $y \ge 1$ , $y \in \Re$ | 2π               | $x = \frac{\pi}{2} + n\pi, n \in I$           |
| $y = \sec 3x$ | $x \neq \frac{\pi}{6} + n\frac{\pi}{3}, n \in I, x \in \Re$ | $y \le -1$ and $y \ge 1$ , $y \in \Re$ | $\frac{2\pi}{3}$ | $x = \frac{\pi}{6} + n\frac{\pi}{3}, n \in I$ |

5. a) see graph below



**b)**  $y = \frac{1}{2} \csc x$  **6.** a) see graph below **b)**  $y = \cos 2x$ 





7. a) see graph below b) see graph below

**8.** a) 
$$y = \cot\left(x + \frac{3\pi}{8}\right)$$
 b)  $y = \sec x - 2$ 

9. B 10. B 11. C 12. 0.25 13. 3.0