Trigonometry - Functions and Graphs Lesson #4:

Warm-Up #1

- i) What is the formula for the circumference of a circle of radius r? $\ell = 200$
- ii) Find the circumference of the following circle. Leave your answer as an exact value in terms of π .

Warm-Up #2

In all previous work with angular measure we have used degree measure .

One degree is defined as $\frac{1}{360}$ of a revolution.

In order to simplify some of the calculations involved in trigonometry and calculus, mathematicians use an alternative angular measure - radian measure.

The Radian Measure of an Angle

The radian measure of an angle is a <u>ratio</u> that compares the length of an arc of a circle to the radius of the circle, i.e.

 $measure \ of \ an \ angle \ in \ radians = \frac{length \ of \ arc \ subtending \ the \ angle}{length \ of \ radius}$

• The radian measure of $\angle AOB$ is given by the ratio $\frac{\operatorname{arc} AB}{\operatorname{radius} OA}$ (see diagram 1)

 One radian is the measure of the angle at the centre of a circle subtended by an arc equal in length to the radius of the circle (see diagram 2)

Diagram 2

 $\angle POQ = 1$ radian

• Use diagram 1 and the definition to estimate the radian measure of $\angle AOB$.

Use diagram 2 to estimate the degree measure of ∠ POQ.

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Converting Between Degrees and Radians

Since an angle can be measured in degrees or radians, it is important in to be able to convert from one measure to the other.

Warm-Up #3

Consider a circle with a radius of r units. Complete the following:

- a) i) one complete rotation in degrees is ______ 3\limits_0^6
 - ii) the arc length for one complete rotation is <u>ARr</u> or Yd which is the <u>carcum ference</u> of the circle.
 - iii) the radian measure of an angle of 360° is $\frac{200}{5}$ = $\frac{200}{5}$

- ii) the arc length for one-half rotation is __\text{Tr}_.

- In mathematics, the symbol " ° " following a number means the unit of angular measure is degrees.
- If there is no unit after the number, or there is the abbreviation "rad", or the word radians, then the unit is radians.
- For example, if you wish to write the sine ratio for a right angle, you must write sin 90°, and NOT sin 90.

a) Complete the chart:

Degrees 360° 180° 90° 60° 45° 30	r Mar
----------------------------------	-------

b) We note that the rule to convert from degrees to radians is to multiply the angle in degrees by TRO

- Convert from degrees to radians (give your answer as an exact value in terms of π)
 - - $= \frac{27011}{1800} = \frac{317}{2} \qquad b) \ 315^{\circ} \times 11 = \frac{31517}{180} = \frac{711}{4}$

Trigonometry - Functions and Graphs Lesson #4: Radian Measure 251

Convert the following from degrees to radians (to the nearest tenth)

(to the hearest tenth)		
b) 205° x 1 = 3.6 rad	3,14	
180	5.14	

- 0360 = 211

a) Complete the chart:

					- 35		270 =
	2-		π	π	π	π	π
Radians	2π	π	2	3	4	6	180
Degrees	360	1800	900	600	45°	360	10

b) We note that the rule to convert from radians to degrees is to multiply the angle in degrees by

Convert the following from radians to degrees.

a)
$$\frac{\pi}{4} \times \frac{180^{\circ}}{20} = \frac{160^{\circ}}{4} = 45^{\circ}$$

$$\frac{-7\pi}{3} \times \frac{40}{3} = -420^{\circ}$$

Convert the following radians to degrees (to the nearest tenth)

a) 1.57 radians
$$1.57 \times \frac{140}{1} = 90^{\circ} \text{ b}$$
) 3.2 $\times \frac{140}{1} = 183.3^{\circ}$ c) $-1.4 \text{ rad } \times 180 = -80.2^{\circ}$

Conversion Chart

Complete Assignment Questions #1 - #5

- a) Use a calculator in degree mode to find the value (to 4 decimal places where necessary).
 - i) $\sin 45^\circ = 0.7011$ ii) $\sec 135^\circ = \frac{1}{(06.735^\circ)} = -1.4142$
- b) Use a calculator in radian mode to find the value (to 4 decimal places where necessary).

$$i) \sin \frac{\pi}{4} = 0.5071$$

ii)
$$\sec \frac{3\pi}{4} = \frac{1}{(55\frac{317}{4})^2} = -1.4142$$

c) Find the value (to 4 decimal places) of:

i)
$$\sin \frac{5\pi}{3} = -0.9660$$
ii) $\cot 135^{\circ}$ iii) $\tan \left(-\frac{5\pi}{6}\right) = 0.5774$ iv) $\cos 45 = 0.5253$

No degree sign ... radian

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

In each of the following:

- i) Draw the angle θ in standard position
- ii) State the principal angle
- iii) Find one positive and one negative coterminal angle for the angle θ

a)
$$\theta = \frac{3\pi}{4}$$
 3 π = 3x45 = 135

principal angle 311

$$\cot \theta_1 = \frac{3\pi}{4} + 3\pi = \frac{3\pi}{4} + \frac{6\pi}{4} = \frac{11\pi}{4}$$

$$\mathbf{b}) \ \theta = -\frac{\pi}{3} = -\mathbf{b}^b$$

$$(0+0) = -\frac{1}{3} + a\hat{1} = -\frac{1}{3} + (a\hat{1} = 5)$$

Find the reference angle for the following rotation angles.

a)
$$\frac{5\pi}{6} = 5(30) = 150$$

a)
$$\frac{5\pi}{6} = 5(30) = 150$$
 b) $-\frac{5\pi}{4} - 5(45) = -225$ c) $\frac{11\pi}{3}$ 11 x (40° = 660°

c)
$$\frac{11\pi}{2}$$

Assignment

- Convert from degrees to radians. Express your answer as an exact value in terms of π.
 a) 30°
 b) 45°
 c) 60°
 d) 135°
 e) 240°
- c) 60° d) 135°

- f) 150°
- g) 90°
- h) 270° i) 225°
- j) 420°

- 2. Convert from radians to degrees.
- b) $\frac{\pi}{4}$ c) $-\frac{2\pi}{3}$ d) $\frac{\pi}{6}$

- e) $\frac{3\pi}{4}$ f) $-\frac{3\pi}{2}$ g) $\frac{7\pi}{4}$ h) $-\frac{5\pi}{6}$

- 3. Convert from degrees to radians. Give the answers to 1 decimal place.
 - a) 50°

- **b**) 205° **c**) 57.3° **d**) 250° **e**) $\left(\frac{120}{\pi}\right)$
- 4. Convert from radians to degrees. Give the answers to the nearest tenth.
 - a) 0.5 radians
- **b**) 3.1 rad
- c) 0.4
- d) 1.8π radians

5. Complete the chart:

Angle in Degrees	0°	30°	45°	60'	90°	120°	1359
Angle in Radians							
Angle in Degrees	150°	18	0° 2	10°	225°	240°	270°
Angle in Radians							
Angle in Degrees	300°	31.	5° 3	30°	360°	540°	720°
Angle in Radians							

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- 6. Find the value (to 4 decimal places where necessary) of

- a) $\tan \frac{\pi}{4}$ b) $\sin 300^{\circ}$ c) $\cos \frac{3\pi}{4}$ d) $\sin \left(-\frac{2\pi}{3}\right)$

- e) $\cot 30^{\circ}$ f) $\cos \frac{5\pi}{2}$ g) $\csc 60$ h) $\sec \left(-\frac{7\pi}{6}\right)$
- 7. In each of the following:
 - i) Draw the angle θ in standard position
 - ii) State the principal angle
 - iii) Find one positive and one negative coterminal angle for the angle θ a) $\theta = \frac{5\pi}{4}$ b) $\theta = \frac{11\pi}{6}$ c) $\theta = -\frac{2\pi}{3}$ d) $\theta = \frac{14\pi}{3}$

a)
$$\theta = \frac{5\pi}{4}$$

$$\mathbf{b}) \quad \theta = \frac{11\pi}{6}$$

c)
$$\theta = -\frac{2\pi}{3}$$

d)
$$\theta = \frac{14\pi}{2}$$

- **8.** Find the reference angle for the following rotation angles.
- a) $\frac{7\pi}{6}$ b) $\frac{3\pi}{4}$ c) $\frac{11\pi}{6}$ d) $-\frac{\pi}{6}$

- e) $-\frac{11\pi}{6}$ f) $-\frac{5\pi}{3}$ g) 5π
- h) $\frac{3\pi}{2}$

9. Determine the rotation angle given the reference angle and the quadrant

Reference Angle	Quadrant	Rotation Angle
$\frac{\pi}{3}$	3	
$\frac{\pi}{8}$	1	
$\frac{\pi}{6}$	4	
$-\frac{\pi}{12}$	2	
$\frac{\pi}{2}$	between 3 and 4	

Choice

- Multiple 10. An angle with radian measure 2.36 has degree measure of
 - 424.80
 - B. 135.22
 - C. 67.61
 - **D.** 0.04

Numerical Response 11. Correct to the nearest tenth of a degree, $\frac{3\pi}{8}$ rad is equal to _____°.

Answer Key

1. a)
$$\frac{\pi}{6}$$
 b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{3\pi}{4}$ e) $\frac{4\pi}{3}$ f) $\frac{5\pi}{6}$ g) $\frac{\pi}{2}$ h) $\frac{3\pi}{2}$ i) $\frac{5\pi}{4}$ j) $\frac{7\pi}{3}$

b)
$$\frac{\pi}{4}$$

c)
$$\frac{\pi}{3}$$

d)
$$\frac{3\pi}{4}$$

e)
$$\frac{4\pi}{3}$$

f)
$$\frac{5\pi}{6}$$

$$g) \frac{\pi}{2}$$

h)
$$\frac{3\pi}{2}$$

i)
$$\frac{5\pi}{4}$$

$$\mathbf{j}) \quad \frac{7\pi}{3}$$

0.631	Angle in Degrees	00	30°	45°	60°	90°	120°	135°
5.	Angle in Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$

Angle in Degrees	150°	180°	210°	225°	240°	270°
Angle in Radians	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	<u>5π</u> 4	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$

Angle in Degrees	300°	315°	330°	360°	540°	720°
Angle in Radians	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π	3π	4π

$$\textbf{6. a)} \quad 1 \quad \textbf{b)} \quad -0.8660 \quad \textbf{c)} \quad -0.7071 \quad \textbf{d)} \quad -0.8660 \quad \textbf{e)} \quad 1.7321 \quad \textbf{f)} \quad 0 \quad \textbf{g)} \quad -3.2807 \quad \textbf{h)} \quad -1.1547$$

(iii)
$$\frac{13\pi}{4}, \frac{-3\pi}{4} = \frac{23\pi}{6}, \frac{-\pi}{6} = \frac{10\pi}{3}, \frac{-8\pi}{3} = \frac{2\pi}{3}, \frac{-4\pi}{3}$$
 Answers may vary

$$\frac{10\pi}{3}$$

$$\frac{2\pi}{3}$$
, =

8. a)
$$\frac{\pi}{6}$$
 b) $\frac{\pi}{4}$ c) $\frac{\pi}{6}$ d) $\frac{\pi}{6}$ e) $\frac{\pi}{6}$ f) $\frac{\pi}{3}$ g) 0 h) $\frac{\pi}{2}$

b)
$$\frac{\pi}{4}$$

c)
$$\frac{\pi}{6}$$

d)
$$\frac{\pi}{6}$$

e)
$$\frac{\pi}{6}$$

$$f(\frac{\pi}{2})$$

9.
$$\frac{4\pi}{3}$$
 $\frac{\pi}{8}$ $\frac{11\pi}{6}$ $\frac{11\pi}{12}$ $\frac{3\pi}{2}$