Trigonometry - Equations, Identities, and Modelling Lesson #1: Solving First Degree Trigonometric Equations

Warm-Up #1

Introduction

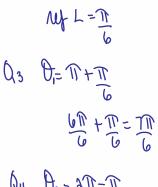
In this lesson we will be solving **first degree equations** where the power of the trigonometric function is one (eg. $2 \sin x + 1 = 0$). We will:

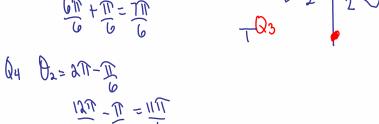
- review the algebraic procedure for solving a first degree equation on a domain of length 2π .
- use a **graphical** approach to determine an approximate solution.
- find the general solution over the domain of real numbers.

Warm-Up #2

Review

Use an algebraic procedure to solve the equation $\sin x = -\frac{1}{2}, \frac{0}{6}, 0 \le x \le 2\pi$.





General Solution

The **general solution** to a trigonometric equation is the solution over the **domain of real numbers**.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

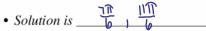
Warm-Up #3

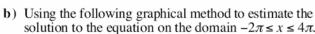
Exploring a General Solution Using a Graphical Approach

20003

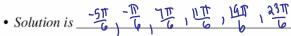
Consider the equation $\sin x = -\frac{1}{2}$, (i.e. $\sin x + \frac{1}{2} = 0$)

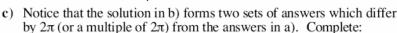
- a) Using the following graphical method to estimate the solution to the equation on the domain $0 \le x \le 2\pi$.
 - Use window x: $\left| 0, 2\pi, \frac{\pi}{6} \right|$ y: [-2, 2, 0.5]
 - Graph $Y_1 = \sin x + \frac{1}{2}$
 - Determine (in terms of π), the x-intercepts of graph Y_1 where $0 \le x \le 2\pi$.

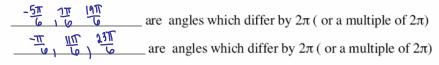




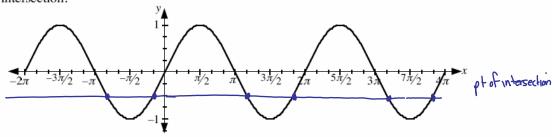
- Use the window x: $\left| -2\pi, 4\pi, \frac{\pi}{6} \right|$ y: $\left[-2, 2, 0.5 \right]$
- Graph $Y_1 = \sin x + \frac{1}{2}$
- Determine the x-intercepts of graph Y₁ where $-2\pi \le x \le 4\pi$. Give the answers as exact values.







- **d)** Use this idea to write the general solution to the equation $\sin x = -\frac{1}{2}$ where $x \in \mathbb{R}$ General Solution is $\frac{1}{2} + \frac{1}{2} + \frac{$
- e) The graph of $y = \sin x$ is shown. Show the solution to the equation $\sin x = -\frac{1}{2}$ on the given domain by drawing the line with equation $y_1 = -\frac{1}{2}$ and marking the points of intersection.



Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

The answers in parts b), c) and d) differ by 2π radians because the graph of $y = \sin x$ has a **period** of 2π radians.

Finding a General Solution Using a Graphical Approach

Use the following procedure to find the general solution

- 1. Use a graphing calculator to solve the equation where the domain is **one period** of the graph of the function (usually $0 \le x \le 2\pi$.). Use either of the following methods:
- enter one side of the equation in Y_1 and the other side of the equation in Y_2 and find the *x*-coordinates of the points of intersection.

or

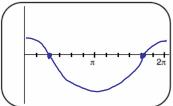
- ullet set the equation equal to zero and enter that into Y_1 and find the x-intercepts.
- Determine the general solution by adding or subtracting multiples of the period of the graph of the function.

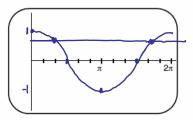
Solve the equation $\cos x - 0.75 = 0$, $x \in \Re$, using two different graphical approaches. Give answers to the nearest hundredth.

Method 1
$$y_1 = (0.500) - .75$$

 $\begin{bmatrix} 0, 2 \\ -2, 2, .25 \end{bmatrix}$
 $X = 0.72$ $x_2 = 5.56$

Method 2
$$y_1 = los(x)$$
 $y_2 = .75$
Pt of intersection $x = .72$ $x_2 = 5.56$
Seneral Soln .72+2nT, S.56+2nT, NEI





Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

General Solution Using an Algebraic Approach

Use the following procedure to find the general solution using an algebraic approach:

- 1. Solve the equation where the domain is **one period** of the graph of the function (usually $0 \le x \le 2\pi$.)
- The general solution can be determined by adding or subtracting multiples of the period.

Use an algebraic procedure to find the general solution to the equation $2\cos x - \sqrt{3} = 0$, $x \in \Re$, where x is in radian measure.

$$\lambda \cos x - \sqrt{3} = 0$$

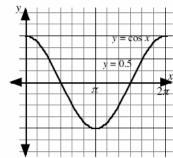
$$\lambda \cos x = \sqrt{3}$$

$$\cos x = \sqrt{$$

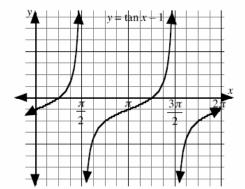
Complete Assignment Questions #1 - #13

Assignment

- 1. The diagram shows the graph of the equations $y = \cos x$ and y = 0.5 in $0 \le x \le 2\pi$.
- a) Explain how to use the graph to determine the approximate solutions to the equation $\cos x = 0.5$, $0 \le x \le 2\pi$.



- b) Write the solutions to the equation $\cos x = 0.5$, $0 \le x \le 2\pi$. Give solutions as exact values.
- c) Write the general solution to the equation $\cos x = 0.5$.
- 2. The diagram shows the graph of the equation $y = \tan x 1$ on the domain $0 \le x \le 2\pi$.
- a) Explain how to use the graph to determine the approximate solutions to the equation $\tan x = 1$, $0 \le x \le 2\pi$.



- **b**) Write the solutions to the equation $\tan x = 1, 0 \le x \le 2\pi$. Give solutions as exact values.
- c) Write the general solution to the equation $\tan x = 1$.
- 3. Determine the solution to each of the following equations, defined on the domain $0 \le x \le 2\pi$, using a **graphical** approach. Give solutions as exact values.

a)
$$\sin x = \frac{\sqrt{3}}{2}$$

b)
$$\tan x = -1$$

c)
$$2 \sec x - 4 = 0$$

4. Use the solutions in #3 to write the general solutions to the equations.

$$a) \sin x = \frac{\sqrt{3}}{2}$$

b)
$$\tan x = -1$$

c)
$$2 \sec x - 4 = 0$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- 5. Determine the solution (to the nearest hundredth) to each of the following equations, defined on the domain $0 \le x \le 2\pi$, using a **graphical** approach.
 - a) $\cos x = 0.6$
- **b**) $\cot x = -\frac{1}{2}$
- $\mathbf{c}) \quad \csc x 3 = 0$
- **6.** Use the solutions in #5 to write the general solutions to the equations.
 - a) $\cos x = 0.6$
 - **b**) $\cot x = -\frac{1}{2}$
 - c) $\csc x 3 = 0$
- 7. Determine the solution to each of the following equations, defined on the domain $0 \le x \le 2\pi$, using an **algebraic** approach.

 - **a)** $2 \sin x = -\sqrt{3}$ **b)** $\cot x + \sqrt{3} = 0$
- c) $3 \sec x 6 = 0$

8. Use the solutions in #7 to write the general solutions to the equations

a)
$$2 \sin x = -\sqrt{3}$$

b)
$$\cot x + \sqrt{3} = 0$$

c)
$$3 \sec x - 6 = 0$$

9. Use an algebraic approach to determine the general solution to the following equations where x is measured in radians.

a)
$$2\cos x - \sqrt{2} = 0$$

b)
$$\csc x + 2 = 0$$

b)
$$\csc x + 2 = 0$$
 c) $\sqrt{3} \cot x + 1 = 0$

10. Determine the general solution to the following equations where x is in degree measure. Answer to the nearest degree.

a)
$$\cos x = -0.639$$

b)
$$\cot x = 0.373$$

b)
$$\cot x = 0.373$$
 c) $5 \csc x + 6 = 0$

Multiple 11. The general solution to the equation $\csc A + 2 = 0$ is

$$A. \quad A = \frac{\pi}{6} + n\pi, \ n \in I$$

B.
$$A = \frac{\pi}{6} + 2n\pi, \ \frac{5\pi}{6} + 2n\pi, \ n \in I$$

C.
$$A = \frac{7\pi}{6} + n\pi, \ \frac{11\pi}{6} + n\pi, \ n \in I$$

D.
$$A = \frac{7\pi}{6} + 2n\pi, \ \frac{11\pi}{6} + 2n\pi, \ n \in I$$

12. The general solution to the equation $\sqrt{3} \cot \theta - 1 = 0$ is

A.
$$\theta = \frac{\pi}{6} + n\pi, n \in I$$

B.
$$\theta = \frac{\pi}{6} + 2n\pi, \ \frac{7\pi}{6} + 2n\pi, \ n \in I$$

C.
$$\theta = \frac{\pi}{3} + n\pi$$
, $n \in I$

D.
$$\theta = \frac{\pi}{3} + 2n\pi, \ \frac{4\pi}{3} + 2n\pi, \ n \in I$$

The smallest positive solution to the equation $\sec x - 5 = 0$, correct to the nearest tenth of a radian, is x =

Answer Key

1. a) Find the x-coordinates of the points of intersection of the two graphs

b)
$$x = \frac{\pi}{3}, \frac{5\pi}{3}$$

c)
$$x = \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi, n \in I$$

2. a) Find the x-intercepts of the graph

b)
$$x = \frac{\pi}{4}, \frac{5\pi}{4}$$

b)
$$x = \frac{\pi}{4}, \frac{5\pi}{4}$$
 c) $x = \frac{\pi}{4} + n\pi, n \in I$

3. a)
$$x = \frac{\pi}{3}, \frac{2\pi}{3}$$

b)
$$x = \frac{3\pi}{4}, \frac{7\pi}{4}$$
 c) $x = \frac{\pi}{3}, \frac{5\pi}{3}$

$$x = \frac{\pi}{3}, \frac{5\pi}{3}$$

4. a) $x = \frac{\pi}{3} + 2n\pi, \frac{2\pi}{3} + 2n\pi, n \in I$

$$\mathbf{b}) \quad x = \frac{3\pi}{4} + n\pi, \, n \in I$$

c)
$$x = \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi, n \in I$$

- **5.** a) x = 0.93, x = 5.36 b) x = 2.03, x = 5.18 c) x = 0.34, x = 2.80
- **6.** a) $x = 0.93 + 2n\pi$, $5.36 + 2n\pi$, $n \in I$
 - **b**) $x = 2.03 + n\pi$, $5.18 + n\pi$, $n \in I$
 - c) $x = 0.34 + 2n\pi$, $2.80 + 2n\pi$, $n \in I$

7. a)
$$x = \frac{4\pi}{3}, \frac{5\pi}{3}$$
 b) $x = \frac{5\pi}{6}, \frac{11\pi}{6}$ c) $x = \frac{\pi}{3}, \frac{5\pi}{3}$

8. a)
$$x = \frac{4\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi, n \in I$$

b) $x = \frac{5\pi}{6} + n\pi, n \in I$

c)
$$x = \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi, n \in I$$

9. a)
$$x = \frac{\pi}{4} + 2n\pi, \frac{7\pi}{4} + 2n\pi, n \in I$$

b)
$$x = \frac{7\pi}{6} + 2n\pi, \frac{11\pi}{6} + 2n\pi, n \in I$$

c)
$$x = \frac{2\pi}{3} + n\pi, n \in I$$

- **10.** a) $x = 130^{\circ} + 360n^{\circ}, 230^{\circ} + 360n^{\circ} n \in I$
 - **b**) $x = 70^{\circ} + 180n^{\circ}, n \in I$
 - c) $x = 236^{\circ} + 360n^{\circ}$, $304^{\circ} + 360n^{\circ}$ $n \in I$
- 11. D
- 12. C
- 13. 1.4