Trigonometry - Equations, Identities, and Modelling Lesson #3: Equations which require a Graphical Solution

Equations which require a Graphical Solution

Some equations cannot be solved by an algebraic approach. In these cases we use a graphical approach to estimate the solution.

Warm-Up

Consider the equation $3 \sin x = x$.

- a) Use the following graphical method to estimate the solution to the equation on the domain $0 \le x \le 2\pi$.
 - Choose a window with appropriate values which will enable us to find the points of intersection of the graphs of y = 3 sin x and y = x.

Use window $x: \left[0, 2\pi, \frac{\pi}{6}\right]$ $y: \left[-4, 4, 1\right]$

- Graph $Y_1 = x$
- Graph $Y_2 = 3 \sin x$
- Use INTERSECT to determine, to the nearest tenth, the x-coordinate(s) of the point(s) of intersection.

- **b**) To determine the **general solution** to the equation $3 \sin x = x$ we need to recognize that the diagonal line (y = x) and the periodic function $(y = 3 \sin x)$ will intersect once more to the left of the origin and nowhere else on the domain of real numbers.
 - Write the general solution to the equation $3 \sin x = x$.

- c) Describe how we could find approximate solutions to the equation $3 \sin x = \frac{1}{x}$ using the ZERO feature of the calculator.

Find x-int of the graph using calc func. zero feature.

Use a graphical approach and the ZERO feature of the calculator to find the solution to the equation $x^3 - x^2 = 2 \sin x$. Give the answers to the nearest tenth.

$$y_1 = \chi^3 - \chi^2 - 25 \ln x$$

Complete Assignment Questions #1 - #7

Assignment

 Use a graphical approach to solve the following equations to the nearest hundredth where necessary.

a)
$$\cos x = x + 1$$

b)
$$x - 2\sin x = 0$$

c)
$$\sin 2x = x$$
,

$$\mathbf{d)} \cos x = x^2$$

2. a) Graph $y = 4 \sin x - x$ on a domain $-2\pi \le x \le 2\pi$. Show the graph on the grid.

- c) Explain how you could use the graph to solve the equation $x = 4 \sin x + 3$, $-2\pi \le x \le 2\pi$.
- d) Solve the equation $x = 4 \sin x + 3$ where $x \in \Re$, to the nearest hundredth.

 $-\frac{\pi}{2}$

3. a) Graph $y = x^2 + \sin 6x$ on a domain $-\pi \le x \le \pi$. Show the graph on the grid.

- **b**) Solve the equation $x^2 = -\sin 6x$ where $x \in \Re$, to the nearest hundredth.
- c) Explain how you could use the graph to solve the equation $x^2 = -\sin 6x + 1, -\pi \le x \le \pi$.
- d) Solve the equation $x^2 = -\sin 6x + 1$ where $x \in \Re$, to the nearest hundredth.

- **4.** How many solutions are there to the equation $\cos^3 x = \sin^3 x + 0.5$ where $-\pi \le x \le \pi$?
 - Α. 1
 - В. 2
 - C. 3
 - **D.** more than 3
- 5. How many solutions are there to the equation $\cos 3x + \frac{1}{2}x = 0$?
 - 2 Α.
 - 3 В.
 - C.
 - D. more than 4

- Numerical 6. The smallest positive solution to the equation $\sec x x = 0$, correct to the nearest tenth of a radian, is x =_____.
 - 7. The number of solutions to the equation $x \sin 2x = 0$ where $-2\pi \le x \le 2\pi$ is _____.

Answer Key

- 1. a) 0 b) -1.90, 0, 1.90 c) -0.95, 0, 0.95 d) -0.82, 0.82
- **2. b**) -2.47, 0.00, 2.47
 - c) Find the x coordinates of the points of intersection of the graph with the line y = -3
 - d) 3.11
- **3. b**) -0.48, 0.00, 0.58, 0.89
 - c) Find the x coordinates of the points of intersection of the graph with the line y = 1
 - **d**) -1.38, -1.07, -0.63, 0.21, 0.34, 1.04
- 4. B 5. B 6. 4.9 7. 9