# Trigonometry - Equations, Identities, and Modelling Lesson #4: Solving Equations Involving Multiple Angles

#### Warm-Up #1

In this lesson we will be solving equations involving multiple angles, eg.  $\sin 3x = 1$ . We will:

- introduce a graphical approach to determine an approximate solution to first degree trigonometric equations involving multiple angles
- find the general solution over the domain of real numbers
- algebraically find the solutions to an equation involving multiple angles.

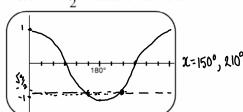
## Warm-Up #2

Graphically Exploring Solutions to Multiple Angle Equations

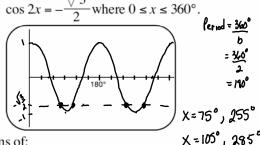
Consider the equations  $\cos x = -\frac{\sqrt{3}}{2}$  and  $\cos 2x = -\frac{\sqrt{3}}{2}$  where x is in degree measure.

a) Use a graphical approach to determine the solution to the equation

 $\cos x = -\frac{\sqrt{3}}{2} \text{ where } 0 \le x \le 360^{\circ}.$ 



b) Use a graphical approach to determine the solution to the equation



- c) Compare the solutions to the two equations in terms of:
  - the number of solutions b) twice a)
  - the values of x. (st two values b) half let two values in a)  $\cos 2x$ b=2 so factor  $\frac{1}{2}$
- d) Complete the following
  - i) The general solution to  $\cos x = -\frac{\sqrt{3}}{2}$  is  $\frac{150^{\circ} + 360^{\circ} + 36$
  - ii) The general solution to  $\cos x = -\frac{\sqrt{3}}{2}$  consists of two sets of answers which differ by  $360^\circ$  degrees because the graph of  $y = \cos x$  has a **period** of  $360^\circ$  degrees.
  - iii) The general solution to  $\cos 2x = -\frac{\sqrt{3}}{2}$  will consist of two sets of answers which differ by  $\frac{190^{\circ}}{2}$  degrees because the graph of  $y = \cos 2x$  has a **period** of  $\frac{190^{\circ}}{2}$
  - iv) The general solution to  $\cos 2x = -\frac{\sqrt{3}}{2}$  is  $\frac{75^{\circ} + 150^{\circ}}{105^{\circ}} + \frac{105^{\circ}}{105^{\circ}} + \frac{1$

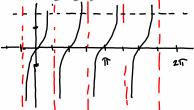
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

## Solving a Multiple Angle Equation Using a Graphical Approach



a) Given  $\tan 2x = \sqrt[4]{3}$ , where  $0 \le x \le 2\pi$ , find the exact values of x using a graphical approach.

$$\chi = \frac{\pi}{C} + \frac{2\pi}{3} + \frac{\pi}{C} + \frac{5\pi}{3}$$



**b**) State the general solution to the equation  $\tan 2x = \sqrt{3}$ .

$$\oint b = \frac{p}{\sqrt{y}} = \frac{y}{\sqrt{y}}$$

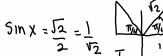
c) Complete the following statement:

The general solution consists of answers which differ by  $\frac{\sqrt[n]{2}}{2}$  radians because the graph of  $y = \tan 2x$  has a **period** of  $\frac{\sqrt[n]{2}}{2}$  radians.

### Warm-Up #3

Algebraically Exploring Solutions to Multiple Angle Equations

Consider the equation  $\sin 3x = \frac{\sqrt{2}}{2}$ .



- a) Complete the following to solve the equation  $\sin 3x = \frac{\sqrt{2}}{2}$ , where  $0 \le x \le 2\pi$ 
  - If x is defined for domain  $0 \le x \le 2\pi$ , then 3x is defined for domain  $0 \le 3x \le 6\pi$

$$\sin 3x = \frac{\sqrt{2}}{2}$$
 Quadrants 1 and 2

Reference angle =

$$3x = \frac{11}{4} \text{ or } \frac{311}{4} \text{ or } 2\pi + \frac{11}{4} \text{ or } 2\pi + \frac{311}{4} \text{ or } 4\pi +$$

**b**) State the general solution to the equation  $\sin 3x = \frac{\sqrt{2}}{2}$ .

c) Verify the solution using a graphical approach.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.



• The general solution consists of two sets of answers which differ by  $\frac{2\pi}{3}$  radians because the graph of  $y = \sin 3x$  has a **period** of  $\frac{2\pi}{3}$  radians.

#### Solving a Multiple Angle Equation Using an Algebraic Approach

Use the following procedure to solve multiple angle equations

- 1. Find the domain for the multiple angle.
- 2. Solve for the multiple angle between 0 and  $2\pi$  using the CAST rule and reference angle.
- 3. Add the period of the trigonometric graph of the multiple angle to each of the answers in step 2 until you cover the domain in step 1.



Consider the equation  $\cos 2x = -\frac{1}{2}$ .

D 4 22 64T

a) Find the exact values of x using an algebraic approach where  $0 \le x \le 2\pi$ .

**b**) State the general solution to the equation  $\cos 2x = -\frac{1}{2}$ .

c) Complete the following statement.

The general solution consists of answers which differ by  $\sqrt{1}$  radians because the graph of  $y = \cos 2x$  has a **period** of  $\underline{\mathcal{N}}$  radians.

d) Verify the solution using a graphical approach.

Complete Assignment Questions #1 - #11

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

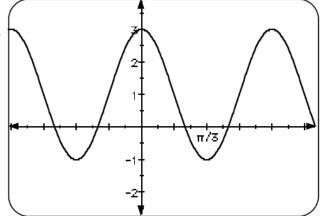
# **Assignment**

- 1. a) Given  $\sin 2x = \frac{\sqrt{3}}{2}$ , where  $0 \le x \le 2\pi$ , find the exact values of x using a graphical approach.
  - **b**) Find the general solution to  $\sin 2x = \frac{\sqrt{3}}{2}$ .
- 2. a) Given cot 2x = 1, where  $0 \le x \le 2\pi$ , find the exact values of x using a graphical approach.
  - **b**) Solve cot 2x = 1 where  $x \in \Re$ .
- 3. Find the general solution to  $\cos \frac{1}{2}x = \frac{\sqrt{3}}{2}$  using a graphical approach.
- **4.** a) Use an algebraic approach to solve the equation  $\sin 2x = \frac{\sqrt{2}}{2}$ ,  $0 \le x \le 2\pi$ 
  - **b**) State the general solution to the equation  $\sin 2x = \frac{\sqrt{2}}{2}$
- 5. a) Use an algebraic approach to solve the equation  $\sec 3x = -2$ ,  $0 \le x \le 2\pi$

**b**) State the general solution to the equation  $\sec 3x = -2$ 

**6.** Use an algebraic approach to determine the general solution to the equation  $\csc 2x = \frac{2\sqrt{3}}{3}$ .

- 7. The graph of  $y = 2 \cos 3x + 1$ , is displayed on a graphic calculator.
  - a) Describe the effects of the parameters 2, 3 and 1 on the graph of  $y = \cos x$ .



**b**) A student was asked to find all the values of  $\theta$  which satisfy the equation  $\cos 3x = -\frac{1}{2}$ ,  $0 \le x \le \pi$ .

Explain how the student can find these values from the graph above and mark these points on the grid.

c) Show how to find these values by solving algebraically  $\cos 3x = -\frac{1}{2}$ ,  $0 \le x \le \pi$ .

- 8. a) Factor the expression  $2 \sin^2 x \sin x 1$  and hence solve the equation  $2 \sin^2 x - \sin x - 1 = 0$  for  $0 \le x \le 2\pi$ .
  - **b**) Describe how the solution of  $2\sin^2\left(\frac{1}{2}x\right) \sin\left(\frac{1}{2}x\right) 1 = 0, 0 \le x \le 2\pi$  relates to the solution of  $2 \sin^2 x - \sin x - 1 = 0, 0 \le \theta \le 2\pi$ . Find these solutions.

Multiple 9. Which of the following is NOT a solution to the equation  $2 \sin 3x = 0$ ?

A. 
$$\frac{\pi}{3}$$

B. 
$$\frac{\pi}{2}$$

C. 
$$\frac{4\pi}{3}$$

$$\mathbf{p} = \mathbf{p}$$

10. If p and q are two solutions to the equation  $\tan 5x = 0.8\pi$ , which of the following statements CANNOT be true?

**A.** 
$$p - q = 0.8\pi$$

**B.** 
$$p-q=\pi$$

C. 
$$p - q = 2.5\pi$$

**D.** 
$$p - q = 5\pi$$

Response

The smallest positive solution to the equation  $\sin 4x = 0.48$ , correct to the nearest hundredth of a radian, is x =\_\_\_\_\_.

**1.a**) 
$$\frac{\pi}{6}$$
,  $\frac{\pi}{3}$ ,  $\frac{7\pi}{6}$ ,  $\frac{4\pi}{3}$  **b**)  $x = \frac{\pi}{6} + n\pi$ ,  $\frac{\pi}{3} + n\pi$ ,  $n \in I$  **2.a**)  $\frac{\pi}{8}$ ,  $\frac{5\pi}{8}$ ,  $\frac{9\pi}{8}$ ,  $\frac{13\pi}{8}$  **b**)  $x = \frac{\pi}{8} + \frac{n\pi}{2}$ ,  $n \in I$ 

3. 
$$x = \frac{\pi}{3} + 4n\pi$$
,  $\frac{11\pi}{3} + 4n\pi$ ,  $n \in I$  4. a)  $\frac{\pi}{8}$ ,  $\frac{3\pi}{8}$ ,  $\frac{9\pi}{8}$ ,  $\frac{11\pi}{8}$  b)  $x = \frac{\pi}{8} + n\pi$ ,  $\frac{3\pi}{8} + n\pi$ ,  $n \in I$ 

5. a) 
$$\frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}, \frac{10\pi}{9}, \frac{14\pi}{9}, \frac{16\pi}{9}$$
 b)  $x = \frac{2\pi}{9} + \frac{2n\pi}{3}, \frac{4\pi}{9} + \frac{2n\pi}{3}, n \in I$ 

**6.** 
$$x = \frac{\pi}{6} + n\pi$$
,  $\frac{\pi}{3} + n\pi$ ,  $n \in I$  **7.** b) Find x-intercepts of graph  $y = 2 \cos 3x + 1$  c)  $\frac{2\pi}{9}$ ,  $\frac{4\pi}{9}$ ,  $\frac{8\pi}{9}$ 

8. a) 
$$(2 \sin x + 1) (\sin x - 1)$$
 and  $x = \frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$ 

b) the value of the solutions in a) will be doubled and any value outside the domain  $0 \le x \le 2\pi$ will be disregarded. The solution is  $x = \pi$ .

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.