Trigonometry - Equations, Identities, and Modelling Lesson #6: Trigonometry Identities Part 2

Warm-Up

In this lesson we will verify and prove more complex trigonometric identities using the skills we learned from the previous lesson.

Some useful steps or hints when trying to prove a trigonometric identity are listed below.

Hints in Proving an Identity

- 1. Begin with the more complex side.
- 2. If possible, use known identities given on the formula sheet, eg. try to use the Pythagorean identities when squares of trigonometric functions are involved.
- 3. If necessary change all trigonometric ratios to sines and/or cosines, eg. replace $\tan \theta$ by $\frac{\sin \theta}{\cos \theta}$, or $\sec \theta$ by $\frac{1}{\cos \theta}$.
- 4. Look for factoring as a step in trying to prove an identity.
- 5. If there is a sum or difference of fractions, write as a single fraction.
- **6.** Occasionally, you may need to multiply the numerator or denominator of a fraction by its conjugate.

Consider the statement $\frac{1}{\cos \theta} - \cos \theta = \sin \theta \tan \theta$.

a) Verify the statement is true for $\theta = \frac{\pi}{3}$.

 Prove the statement is an identity using an algebraic approach

$$\frac{L.S.}{\cos \theta} = \frac{R.S.}{\cos \theta}$$

$$\frac{1}{\cos \theta} - \frac{\cos \theta}{\cos \theta} = \frac{\sin \theta}{\cos \theta}$$

$$\frac{1 - \cos^2 \theta}{\cos \theta} = \frac{\sin^2 \theta}{\cos \theta}$$

$$\frac{\cos^2 \theta}{\cos \theta} = \frac{\sin^2 \theta}{\cos \theta}$$

 b) Use a graphing calculator to show that the statement is probably an identity.

$$y_1 = \frac{1}{1000} - (000)$$
 $y_2 = \sin \theta \tan \theta$
graphs are identical

d) State the restrictions in terms of θ .

Note that the restrictions can be verified from the graph.

Consider the statement $\frac{\sin \theta}{\tan \theta} = \cos \theta$

a) Verify the statement is true for $\theta = \frac{\pi}{6}$

L.S.	R.S.
Sin II 6	COST
1 13	<u>5</u> 2
$\frac{1}{2} \cdot \frac{1}{3} = \frac{13}{2}$ Prove the statemen	= 13 2 t is an identity usi

c) Prove the statement is an identity using an algebraic approach

b) Use a graphing calculator to show that the statement is probably an identity.

$$y_1 = \frac{\sin \theta}{\tan \theta}$$
 $y_2 = \cos \theta$
graphs are identical

d) State the restrictions in terms of θ .

Prove the following identity algebraically.

$$\sin x \cos^2 x + \sin^3 x = \frac{1}{\csc x}$$

Prove that
$$\frac{\sin A + \tan A}{1 + \cos A} = \frac{1}{\cot A}$$
 is an identity.
For what values of A is this identity undefined?

Restrictions

(0++0 tun4 + undefined

$$\frac{A+11+n11}{2}+n11 \cdot nET$$
H105A +0
$$\frac{A+11+2n11}{105A+11} \cdot nGI$$
Jun4= $\frac{51nA}{105A}$

$$\frac{(05A+0)}{105A} \cdot \frac{1}{2} + nII \cdot nEI$$

Prove the identity
$$\frac{\sec^2\theta}{\sec^2\theta - 1} = \csc^2\theta$$
. $\frac{1}{\cos^2\theta} = \csc^2\theta$ $\frac{1}{\sin^2\theta} = \csc^2\theta$ $\frac{1}{\sin^2\theta} = \csc^2\theta$ $\frac{1}{\cos^2\theta} = \cot^2\theta$ $\frac{1}{\cos^2\theta} = \cot^2\theta$

Using Identities to Solve Equations

Solve the following equations where $0 \le x \le 2\pi$.

$$\mathbf{b)} \quad \sin x - \sqrt{3} \cos x = 0$$

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- **Assignment**1. Consider the statement $\frac{\cos \theta \sin \theta}{\cos \theta} = \sin^2 \theta \tan \theta + \cos^2 \theta$.
 - a) Verify the statement is true for $\theta = \frac{\pi}{4}$. b) Prove the statement is an identity.

- c) State, and give reasons, for any restrictions.
- 2. Consider the statement $\frac{\cot \theta 1}{\tan \theta 1} = -\frac{1}{\tan \theta}$.
 - a) Verify the statement is true for $\theta = \frac{\pi}{3}$
- **b**) Prove the statement is an identity.

c) State, and give reasons, for any restrictions.

- 3. In each of the following:
 - i) verify the possibility of an identity using a graphing calculator
 ii) prove the identity using an algebraic approach

 - iii) state any restrictions.

$$\mathbf{a}) \quad \frac{\tan \theta \cos \theta}{\sin \theta} = 1$$

$$\mathbf{b}) \sec^2 x - \sin^2 x = \cos^2 x + \tan^2 x$$

4. Prove the following identities using an algebraic approach.

$$\mathbf{a}) \quad (1 - \cos^2 x)(\csc x) = \sin x$$

a)
$$(1 - \cos^2 x)(\csc x) = \sin x$$
 b) $(\sin \theta + \cos \theta)^2 = 1 + 2\sin \theta \cos \theta$

c)
$$\frac{1 - \cos x}{\sin x} = \frac{\tan x - \sin x}{\tan x \sin x}$$

c)
$$\frac{1 - \cos x}{\sin x} = \frac{\tan x - \sin x}{\tan x \sin x}.$$
 d)
$$\frac{2}{1 - \sin \theta} + \frac{2}{1 + \sin \theta} = 4 \sec^2 \theta$$

e)
$$\frac{1 + \cos x}{\tan x + \sin x} = \cot x$$

f)
$$\sec x - \cos x = \frac{\sin x}{\cot x}$$

5. Use conjugates to prove the following identities using an algebraic approach.

$$a) \frac{1}{1-\sin A} = \frac{1+\sin A}{\cos^2 A}$$

a)
$$\frac{1}{1 - \sin A} = \frac{1 + \sin A}{\cos^2 A}$$
 b) $\frac{1 - \cos A}{\sin A} = \frac{\sin A}{1 + \cos A}$

6. Prove that $\frac{2\cos x - 1}{2\cos^2 x - 7\cos x + 3} = \frac{1}{\cos x - 3}$ is an identity.

For what values of x is this identity undefined?

7. Solve for x as an exact value where $0 \le x \le 2\pi$.

a)
$$3 - 3 \sin x - 2 \cos^2 x = 0$$
 b) $\tan^2 x - 1 = \sec x$ c) $\sin^2 x - \cos^2 x = 0$

$$\mathbf{b}) \tan^2 x - 1 = \sec x$$

$$\mathbf{c}) \quad \sin^2 x - \cos^2 x = 0$$

8. Solve, to the nearest tenth, the equations $7 \sec^2 x + 2 \tan x - 6 = 2 \sec^2 x + 2$, $0 \le x \le 2\pi$.

Multiple Choice 9. The identity
$$\frac{\sec x + 1}{\sec x - 1} + \frac{\cos x + 1}{\cos x - 1} = 0$$
 has restrictions

A.
$$x \neq 2n\pi$$
, $\frac{\pi}{2} + 2n\pi$, $n \in I$

B.
$$x \neq 2n\pi$$
, $\frac{\pi}{2} + n\pi$, $n \in I$

C.
$$x \neq \pi + 2n\pi$$
, $\frac{\pi}{2} + 2n\pi$, $n \in I$

D.
$$x \neq 2n\pi$$
, $n \in I$

Numerical 10. The value of n to the nearest tenth for which the statement below is an identity, is _____. $\frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} = \frac{n}{\cos \theta}.$

$$\frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} = \frac{n}{\cos \theta}.$$

11. If $\frac{p}{2}\cos^2\frac{\pi}{5} + \frac{p}{2}\sin^2\frac{\pi}{5} = 4$, the value of p, to the nearest tenth, is _____.

Answer Key

1. a) both sides equal 0 c)
$$\theta \neq \frac{\pi}{2} + n\pi$$
, $n \in I$

2. a) both sides equal
$$-\frac{\sqrt{3}}{3}$$
 c) $\theta \neq n\pi$, $\frac{\pi}{4} + n\pi$, $\frac{\pi}{2} + n\pi$, $n \in I$ or $\theta \neq \frac{\pi}{4} + n\pi$, $n \in I$

$$\mathbf{3. \ a)} \quad \theta \neq n\pi, \, \frac{\pi}{2} + n\pi, \, n \in I \quad \text{ or } \quad \theta \neq n\frac{\pi}{2}, \, n \in I \quad \text{ b)} \quad x \neq \frac{\pi}{2} + n\pi, \, n \in I$$

6.
$$x \neq \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi, n \in I$$
 7.a) $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$ b) $\frac{\pi}{3}, \pi, \frac{5\pi}{3}$ c) $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$ 8. 0.5, 2.4, 3.7, 5.5 9. B 10. 2.0 11. 8.0

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.