Trigonometry - Equations, Identities, and Modelling Lesson #8: Double Angle Identities

Warm-Up #1

Consider the statement $\sin 2\theta = 2 \sin \theta$.

a) Determine whether or not the statement can be verified using $\theta = \frac{\pi}{6}$.

LS = Sin
$$A(I) = Sin I = \frac{13}{3}$$
 RS = $Asin I = A(I) = 1$ LS + RS not verified

b) What can we say about the statement $\sin 2\theta = 2 \sin \theta$?

not true

Warm-Up #2

Use exact values to verify the following statements:

a)
$$\sin \frac{\pi}{3} = 2 \sin \frac{\pi}{6} \cos \frac{\pi}{6}$$

$$\frac{\sqrt{3}}{3} = \lambda \left(\frac{1}{3}\right) \left(\frac{6}{3}\right)$$

$$\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3} \quad \text{LS=RS}$$

b)
$$\cos \frac{\pi}{2} = \cos^2 \frac{\pi}{4} - \sin^2 \frac{\pi}{4}$$

$$0 = \left(\frac{1}{\sqrt{2}}\right)^2 - \left(\frac{1}{\sqrt{2}}\right)^4$$

$$0 = \frac{1}{2} - \frac{1}{2}$$

$$0 = 0 \qquad \text{L5 = 65.}$$

Double Angle Identities

Warm-Up #2 is an example of verifying the double angle identities. The double angle identities for sine and cosine are shown.

$$\sin 2\theta = 2\sin \theta \cos \theta$$
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

These identities are on the formula sheet.

The identity for $\cos 2\theta$ can also be written in the following forms, which are given on the formula sheet. You will be asked to prove all three forms of the identity in the assignment.

$$\cos 2\theta = 2\cos^2\theta - 1$$
$$\cos 2\theta = 1 - 2\sin^2\theta$$

These identities are on the formula sheet.

Use an addition identity to prove the double angle identity $\sin 2A = 2 \sin A \cos A$.

Consider the identity $\frac{2 \tan x}{1 + \tan^2 x} = \sin 2x$.

a) Describe how to use a graphing calculator to verify the identity.

Graph
$$y_1 = \frac{\lambda \tan x}{1 + \tan^2 x}$$
 $y_{\lambda} = \sin 2x$ graphs are identical b) Prove the identity. $1 + \tan^2 x$

$$\frac{\log x}{\log x} + \frac{\log x}{\log x} = \frac{2 \sin x}{\cos x} = \frac{2 \sin x}{\log x} \times \frac{\log^2 x}{\log x} = \frac{2 \sin x}{\log x}$$

$$\frac{\log^2 x}{\log^2 x} = \frac{2 \sin x}{\log x} \times \frac{\log^2 x}{\log x} = 2 \sin x$$

Express each of the following in terms of a single trigonometric function.

a)
$$2\sin(4x)\cos(4x)$$

$$\mathbf{b)} \cos^2\left(\frac{1}{2}A\right) - \sin^2\left(\frac{1}{2}A\right)$$

a)
$$2 \sin 4x \cos 4x$$
 b) $\cos^2 \frac{1}{2}A - \sin^2 \frac{1}{2}A$ c) $\sin \frac{5}{2}x \cos \frac{5}{2}x$ $\left(\frac{1}{2}A \sin \frac{5}{2}x \cos \frac{5}{2}x\right)$ $= \frac{1}{2}\sin 2(\cos \frac{5}{2}x)$ $= \frac{1}{2}\sin 2(\cos \frac{5}{2}x)$

Solving Equations Using Double Angle Identities

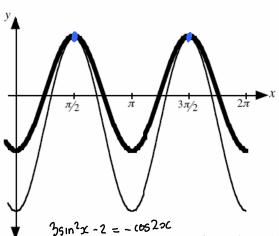
Jenny graphed the following equations on her graphing calculator.

$$y = -\cos 2x$$
$$y = 3\sin^2 x - 2$$

a) Describe how to use the graphs to solve the equation

$$3 \sin^2 x + \cos 2x - 2 = 0$$
where $0 \le x \le 2\pi$.

Mark these points with DOTS on the grid.



Determine points of intersection of the two curves

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

b) Find the solution to the equation $3 \sin^2 x + \cos 2x - 2 = 0$, where $0 \le x \le 2\pi$, by algebraic means, as exact values.

$$3\sin^{2}x + (1-3\sin^{2}x)-2$$

$$\sin^{2}x - 1=0$$

$$\sin^{2}x = 1$$

$$\sin^{2}x = 1$$

$$\sin^{2}x = 1$$

$$2$$

$$\sin^{2}x = 1$$

$$2$$

$$2$$

$$2$$



c) Describe how to use the graphs to solve the equation $-\cos 2x (3\sin^2 x - 2) = 0$, where $0 \le x \le 2\pi$.

Mark these points with a SQUARE on the grid.

d) Solve algebraically the equation $-\cos 2x$ ($3\sin^2 x - 2$) = 0, where $0 \le x \le 2\pi$, to the nearest tenth.

$$-\cos 3x = 0$$

$$\cos 3x = 0$$

$$3\sin^{2}x = 2 \quad \sin^{2}x = \frac{2}{3} \quad \sin x = \frac{1}{2} \quad \text{and} \quad L = 0.455$$

$$2x = \frac{1}{3} \cdot \frac{3\pi}{3} \cdot 1 \quad x^{\frac{1}{1}} + \frac{3\pi}{3} \quad X = 0.955 \quad \pi + 0.955 \quad$$

Complete Assignment Questions #1 - #8

Assignment

- 1. Prove the following double angle identities using tan addition identity for cosine.
 - a) $\cos 2\theta = \cos^2 \theta \sin^2 \theta$. b) $\cos 2\theta = 2\cos^2 \theta 1$ c) $\cos 2\theta = 1 2\sin^2 \theta$.

2. Prove the identity $\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos 2\theta.$

3. Solve the following equations for $0 \le x \le 2\pi$.

$$\mathbf{a}) \cos 2x + \cos x = 0$$

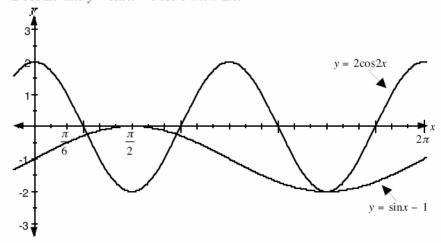
$$\mathbf{b})\cos 2x = 1 - 2\sin x$$

a)
$$\cos 2x + \cos x = 0$$
 b) $\cos 2x = 1 - 2\sin x$ c) $2\cos^2 \frac{1}{2}x - 1 = 0$

$$\mathbf{d)} \sin 2x + \cos x = 0$$

e)
$$\cos 2x - \sin x = 0$$

4. The diagram shows the graphs of two trig functions $y = 2 \cos 2x$ and $y = \sin x - 1$ for $0 \le x \le 2\pi$.



a) Describe how to use the graphs to solve the equation $2 \cos 2x - \sin x + 1 = 0$, where $0 \le x \le 2\pi$. Mark these points with **DOTS** on the grid.

b) Find the solution to the equation $2 \cos 2x - \sin x + 1 = 0$, where $0 \le x \le 2\pi$, by algebraic means, to the nearest hundredth.

c) Describe how to use the graphs to solve the equation $2 \cos 2x (\sin x - 1) = 0$, where $0 \le x \le 2\pi$. Mark these points with a **SQUARE** on the grid.

d) Solve algebraically the equation $2 \cos 2x (\sin x - 1) = 0$, where $0 \le x \le 2\pi$. Give the answers as exact values.

5. Express each of the following in terms of a single trigonometric function.

a)
$$2 \sin \frac{1}{2} x \cos \frac{1}{2} x$$
 b) $\cos^2 2A - \sin^2 2A$ **c)** $1 - 2 \sin^2 3x$

6. Use a double angle identity to simplify and evaluate

a)
$$2 \sin 15^{\circ} \cos 15^{\circ}$$
 b) $\cos^2 \frac{\pi}{12} - \sin^2 \frac{\pi}{12}$ **c)** $\sin \frac{5\pi}{12} \cos \frac{5\pi}{12}$

c)
$$\sin \frac{5\pi}{12} \cos \frac{5\pi}{12}$$

Multiple Choice 7. The expression $\frac{\cos^2 \frac{3}{2}x - \sin^2 \frac{3}{2}x}{\sin \frac{3}{2}x \cos \frac{3}{2}x}$ is equivalent to

$$\mathbf{A.} \quad \cos\frac{3}{2}x - \sin\frac{3}{2}x$$

B.
$$\cot 3x$$

C.
$$2 \cot 3x$$

D.
$$2 \csc 3x$$

Numerical Response 8. If
$$a \cos^2 \frac{\pi}{8} - a \sin^2 \frac{\pi}{8} = 4\sqrt{2}$$
, the value of a, to the nearest tenth, is _____.

3. a)
$$x = \frac{\pi}{3}$$
, π , $\frac{5\pi}{3}$ b) $x = 0$, $\frac{\pi}{2}$, π , 2π c) $x = \frac{\pi}{2}$, $\frac{3\pi}{2}$ d) $x = \frac{\pi}{2}$, $\frac{7\pi}{6}$, $\frac{3\pi}{2}$, $\frac{11\pi}{6}$ e) $x = \frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{3\pi}{2}$

4. a) Find the *x*-coordinates of the points of intersection of the two graphs

b) 0.85, 2.29, 4.71 **c**) Find the *x*-intercepts of each graph **d**)
$$\frac{\pi}{4}$$
, $\frac{\pi}{2}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$

5. a) $\sin x$ **b**) $\cos 4A$ **c**) $\cos 6x$

6. a)
$$\sin 30^{\circ} = \frac{1}{2}$$
 b) $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ c) $\frac{1}{2} \sin \frac{5\pi}{6} = \frac{1}{4}$ 7. C 8. 8.0

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.