 Probably not, it's water (H₂O) <u>SATP</u> (standard ambient temperature & pressure: 25°C, 100 kPa), <u>STP</u> (standard T&P: 0°C, 101.325 kPa) <u>Element</u>: cannot be broken down by chemical means (all same type of atom). <u>Compound</u>: broken down by chemical means (two or more different types of atoms) <u>Group</u>: vertical column on periodic table <u>Period</u>: horizontal (left/right) row <u>Metal</u>: element to the left of the staircase line. They tend to be solids at SATP, and conduct. Nonmetals: to the right of staricase line. Tend to be gases, non-conductors, and brittle as solid 	 I - Alkali metals, II - Alkaline earth metals, VII - halogens, VIII - noble gasses, middle - transition elements/metals, bottom - inner transition elements (lanthanides, actinides) <u>Democritus</u>: first to propose atom and the void based purely on logic <u>Aristotle</u>: his ideas were also based on thought. He was way off, but his ideas persisted for 2000 years <u>Dalton</u>: 1st to investigate structure of matter by experiment. His five postulates included the idea that all matter is made of atoms, each element has its own type of atoms, and atoms are rearranged in chemical reactions
 <u>Thompson</u>: with the identification of electrons he proposed that negative electrons existed in a positive dough. <u>Rutherford</u>: famous gold foil experiment proved that an atom was mostly empty, with a dense positive nucleus orbited by electrons <u>Bohr</u>: added to Rutherford's model the idea of "shells". Evidence includes line spectra. 5. Mendeleev ordered table according to atomic mass (today it's done by atomic number) 6. Atomic number = # of protons Mass number = # or protons + # of neutrons They are averages (of different isotopes) 7. 20, 37, 17, 17 	 Size increases down a group (more shells), it decreases left to right as the # of protons increases, pulling outer electrons closer <u>lonization energy</u>: energy required to remove outer electron. It is high when atoms are small (high in group) with lots of protons (right in period). <u>Electron affinity</u>: the energy change when an electron adds to an atom. It is also high when atoms are small (high in group) with lots of protons (right in period). <u>Electron affinity</u>: the energy change when atoms are small (high in group) with lots of protons (right in period). <u>Electronegativity</u>: ability of atoms, when bonded, to attract electrons (essentially a numerical value for electron affinity). It follows the same trend as electron affinity for the same reason
10. O Al Na I State lons: O^{2-} Al ³⁺ Na ⁺ I ⁻ no ion Valence: 2 3 1 1 n/a 11. Covalent = a, d Ionic = b, c, e 12. Lewis: Mg O (Mg) ²⁺ [Mg] ²⁺ [P] ²⁻ Mg O (Mg) ²⁺ [Mg] ²⁺ [P] ²⁻ Mg O (Mg) ²⁺ [Mg] ²⁺ [P] ²⁻	13. H P H H P H H P H H N H N H N N N N N N
15. In order from low to high boiling points: H ₂ : covalent (Δ EN=0), CH ₄ : covalent (0.4), H ₂ O: polar covalent (1.4), LiF: ionic (3.0) 16. HCl, Na ₂ O, PCl ₃ , Al ₂ O ₃ , MgO 17. A) copper(I) iodide, b) HI(aq), c) dinitrogen tetroxide, d) phosphorous acid, e) PBr ₅ , f) Fe ₂ O ₃ , g) K ₃ N, h) H ₂ C ₂ O ₄ , i) dichlorine heptoxide, j) hydrofluoric acid, k) nickel (II) sulfate hexahydrate, I) hydrogen sulfide 18. <u>combustion</u> : AB + oxygen → oxides of A & B <u>synthesis</u> : A+B→C, <u>decomposition</u> : AB → A + B	19. a) Ca + CuSO ₄ \rightarrow Cu + CaSO ₄ b) FeCl ₂ + Ag \rightarrow NR c) H ₂ O + Ca \rightarrow H ₂ + Ca(OH) ₂ d) Al + H ₂ SO ₄ \rightarrow H ₂ + Al ₂ (SO ₄) ₃ e) Na + Ni ₃ (PO ₄) ₂ \rightarrow Ni + Na ₃ PO ₄ f) Au + HCl \rightarrow NR