SCIENCE 10F

Optical Illusions

Question: Why are there optical illusions in your astronomy booklet?

The Early History of Astronomy

Ancient people saw seven celestial bodies moving through the stars:
\qquad ,
\qquad ,
\qquad . Five of these objects were considered to be 'special stars' through the constellations. These objects were considered to be special stars which they called \qquad .

Ptolemy (100-200 AD): Determined the positions of many of the brightest stars. He has summarized the geocentric model of the solar system, which stated that
\qquad is motionless and everything revolves around it. The problem was that the planets seemed to loop backwards, and if they were making perfect circles around the Earth that wouldn't happen. We call this strange phenomenon \qquad .

Aristarchus (310 - $\mathbf{3 2 0}$ BC): Proposed that all of the planets, including the Earth, revolved around the _ and that the Earth rotates on an _ once a day. This is called the
\qquad model.

The sun centered model of the solar system accounts for the wacky movement of the planets. In this model, retrograde motion is an \qquad which makes it seem as if the planets go backward. What is actually happening is that the planets are moving in different sized orbits at different speeds, so they catch up and pass each other, making it look like they are moving in opposite directions when it's really the same.

"Backward" Motion of Planets

Planets tend to move across the sky in an easterly direction. Occasionally, something strange occurs. A planet appears to slow down and begin moving backward toward tht west. In this activity you are going to find out why this happens. The diagram below represents a part of our solar system. Earth and Mars are shown at several positions in their orbits around the sun. Each position is labeled with the name of the month when the planet will be located there.

Procedure

1. In the diagram below, draw a line from each Earth position through the Mars position for the same month. Extend the line approximately 1 cm past the dashed line. Place a dot at the end of the line and label the dots in order, with the dot on the January line being number 1, the dot on the February line being number 2, and so on. Note: If paths cross draw the lines slightly long and place the dots slightly farther away than you did for the other lines. Notice that the line for January is already drawn and the dot is labeled.
2. Using a pencil, start with the dot labeled "1" and carefully connect the dots in order (This line represents the path the planet Mars would follow in its orbit around the sun as seen from Earth.)

The dots that you put at the ends of the lines represent the positions where an observer on Earth would see Mars for the month indicated on the diagram. The line you drew connecting the dots represents the path Mars appears to follow.

Critical Thinking and Application

1. a. What movement does Mars actually experience from January through August?
b. To an observer on Earth, what movement does Mars appear to experience during that time period?
2. During which months does Mars appear to be moving backward in its orbit?
3. Carefully observe what is happening to Earth and Mars in their orbits when Mars seems to loop "backward." What causes Mars to seem to move backward in its orbit?
4. a. Do you think that to an observer on Earth all the planets visible in the night sky would appear at some point to go backward?
b. Explain your answer to question 4 a .
5. Why would it be very difficult to observe Mercury and Venus to see if they experience such backward motion?

Goal - Irace the path made by the monthly pesition of two planets to see them retrograde and pass each other in the ski.

Introduction

The diagrams below shew the pesitions of Mars and Jupiter against a hatkeround of stars from September until June. Jupiter is the larger (brighter) of the phanets.

October

What to Do

1. Find Mars and Jupiter in each picture and transfer each to its summary pieture below. Connect the dets to see the motions of Mars and Jupiter over a typical 10 -month period.

Path of Mars (September to June)

Path of Jupter (Soplerntorer to June)

Analyze

2. In which months was each planet retrograding?
3. How could you find out a more precise date for when each planet changed direction?

The History of Astronomy

1. Why did ancient people study the stars?
2. What did the ancients think was in the centre of the universe?
3. Provide three examples of old observatories?
4. The sun rises at different spots every day, what causes this movement?
5. What times of the year are marked in the stone hedge?
6. How did the Greeks see the universe?
7. What observation indicated that the earth could be round?
8. What did Kepler discover?
9. What did Newton discover?
10. What are all stars organized into?

The Sun

1. Identify and label on lines A-I the features of the sun's interior and exterior.
2. Name two ways energy from the sun affects the Earth.

What is one effect of ultraviolet radiation on humans? \qquad
4. .. ny is oil sometimes referred to as "liquid sunshine"? \qquad

Identify and label above.

1. the ringed planet \qquad
2. the Earth's nearest natural satellite \qquad
3. the farthest planet from the sun \qquad
4. the two planets between which the belt of asteroids orbit \qquad
5. Earth's nearest neighbors-Mars and \qquad
6. the planet with the smallest orbit around the sun \qquad

2a. Solar System.

Mercury and Venus

harsh landscape; no air or water; no natural satellites

Distance from sun: $57,900,000 \mathrm{~km}$ Diameter: $4,878 \mathrm{~km}$
Revolution time: 88 days
Rotation: 59 days
Surface temperatures: $430^{\circ} \mathrm{C}$ on day side to $-170^{\circ} \mathrm{C}$ on night side

harsh landscape; heavy cloud cover; strong surface winds;
seen in phases; referred to as a "star"; no natural satellites

Distance from sun: $108,200,000 \mathrm{~km}$
Diameter: $12,100 \mathrm{~km}$
Revolution time: 225 days
Rotation: 243 days
Surface temperature: $470^{\circ} \mathrm{C}$

Is it Mercury or Venus? Write your answer in the space.
\qquad 1. often hidden in the sun's glare
\qquad 2. sometimes called the "morning star" or "evening star"
___ 3. has a wide range in temperature on its surface
_ 4. seen in phases like the moon
\qquad 5. except for the sun and moon, the brightest object in the sky
\qquad 6. has very long periods of day and night due to rotation time

Eartn ana lvars

Earth

one-fourth of surface covered by land, three-fourths by water; atmosphere mostly of nitrogen and oxygen; supports intelligent life; one natural satellite

Distance from sun: $149,600,000 \mathrm{~km}$
Diameter: $12,756 \mathrm{~km}$
Revolution time: $3651 / 4$ days
Rotation: 23.93 hours
Surface temperature:
varies, averages around $15^{\circ} \mathrm{C}$

Is it Earth or Mars? Write your answer in the space.
\qquad 1. Revolution and rotation cause this planet to have four different seasons within 52 weeks.
\qquad 2. Tremendous dust storms frequently rage across the surface of this planet.
\qquad 3. Phobos and Deimos are its natural satellites.
\qquad 4. Must of this planet is covered with water.
\qquad 5. It is the third planet in distance from the sun.
_6. Its polar ice caps grow in size during the winter and shrink in the summer.

Earth's Seasons and the Asteroids in Space

Tilt of the Earth is $231 / 2$ degrees from the perpendicular. Earth revolves around sun. In Northern Hemisphere: summer-Earth tilts toward sun and receives strong, direct sun rays, high temperatures; winter-Earth tilts away from sun and receives weak, slanted sun rays, lower temperatures; spring and autumn-Earth tilts neither toward nor away from sun, moderate temperatures.

Asteroids are orbiting pieces of rock of different size and brightness.

1. The Earth is closer to the sun by \qquad million km during the season of \qquad .
2. The Earth's axis is \qquad as the Earth revolves around the \qquad .
3. \qquad rays from the sun cause \qquad temperatures than do slanted rays.
4. In the Southern Hemisphere, the seasons are \qquad those in the Northern Hemisphere.
5. The belt of asteroids is found between the planets \qquad and \qquad .
teroids also \qquad around the sun as do the planets.

Our Moon and Tides

Tides

Spring Tides-Gravity from the sun and moon pulls together on Earth.

1. On lines A-D, label the parts of the moon's surface.

Sea of Clouds Sea of Tranquility Copernicus Sea of Serenity
2. "Sea Areas" appear dark because they do not reflect as much \qquad as do the
\qquad ranges.
3. Mountains are jagged because the moon has no \qquad or \qquad to cause weathering or erosion.
4. The \qquad of the sun and moon is the main cause of tides on Earth.
5. When there are high tides, there are also \qquad tides somewhere on Earth, \qquad times a day.

5a. Solar System

Eclipses

The sun's corona during total eclipse.

Lunar Eclipse-Moon passes into Earth's shadow.

1. During a solar eclipse, the shadow of the \qquad falls on the \qquad ; in a lunar eclipse, the shadow of the \qquad falls on the \qquad .
2. The darkest part of a shadow is called the \qquad ; the broader, outer part is called the \qquad .
3. In a total solar eclipse, the sun's \qquad is visible because the \qquad blocks out the sunlight.
4. Why do partial eclipses of the moon occur more frequently than total solar eclipses?
\qquad
\qquad
\qquad
\qquad

comets ana ivieteors

1. Label the parts of a comet on lines A and B.
2. Why does the comet on the right side of the drawing not have a tail?
3. The path of a comet around the sun is called its \qquad .
4. What causes a meteoroid to glow and become visible on Earth?
5. What is the difference between a meteoroid and meteorite?
\qquad
\qquad
6. Why do most meteors not land on the Earth's surface?

Distance from sun: $1,427,000,000 \mathrm{~km}$ Diameter at equator: $120,400 \mathrm{~km}$ Revolution time: 29.5 years
Rotation: 10.7 hours
Atmosphere temperature: $-185^{\circ} \mathrm{C}$

O probably made of fine rocks or ice particles

1. What gives Jupiter its banded appearance? \qquad
2. Why could a spacecraft fly through the rings of Saturn? \qquad
3. Why are the atmosphere temperatures of these two planets so cold? \qquad
4. How does the length of the Great Red Spot compare with the diameter of Jupiter? \qquad
\qquad
5. How much farther from the sun is the planet Saturn than planet Earth? \qquad
\qquad
6. How does the time of rotation of Jupiter and Saturn compare with that of Earth? \qquad
\qquad
has greenish color with narrow rings; thick atmosphere of gases; rotates on horizontal axis of about 98° from perpendicular; five natural satellites

has greenish color; thick atmosphere of gases; "twin of Uranus"; two natural
Neptune
 satellites

Distance from sun: $4,504,000,000 \mathrm{~km}$
Diameter: 48,600 km
Revolution time: 165 years
Rotation: 17.9 hours
Atmosphere temperature: $-200^{\circ} \mathrm{C}$

> most recently discovered planet in solar system (1930); least known
> planet; one natural satellite

Pluto

Distance from sun: $5,900,000,000 \mathrm{~km}$
Diameter: 3,000 (?) km
Revolution time: 248 years
Rotation: 6.4 days
Surface temperature: $-230^{\circ} \mathrm{C}$

Is it Uranus, Neptune, or Pluto? Write your answer in the space.
\qquad 1. the smallest planet in the solar system
\qquad 2. both poles take a turn facing the sun during its 84 -year revolution
\qquad 3. the most recent planet to be discovered

- . - 4. the eighth planet from the sun in the solar system
\qquad 5. a gaseous planet with narrow rings about $3,030,000,000 \mathrm{~km}$ from Pluto

6. a greenish-colored planet with two natural satellites

8a. Solar Syatem
Copyright • 1986 - Milliken Publishing Co. All rights reserved.

Tools of the Astronomer

radio telescope

1. In the drawings above, label the parts indicated.
2. Which type of instrument does not use an optical telescope? \qquad
3. Describe how a spi ctroscope works. \qquad
4. Which type of telescope is most often used to view distant land objects? \qquad

Star Brightness

A star's brightness is dependent on three factors-temperature, size, and distance from the Earth.

Both stars are same distance from Earth.

Earth
Both stars are same size and have same temperatures.

1. List the two major forms of energy released from the stars.
2. What other forms of radiation may come from the stars? \qquad
3. Why are stars sometimes referred to as atomic furnaces? \qquad
4. In the drawings above, circle stars A or B to indicate which ones would be brighter according to their temperature or distance from the Earth.
5. The surface temperature of the star Rigel is about $15,000^{\circ} \mathrm{C}$. The sun has a temperature of about $6,000^{\circ} \mathrm{C}$. Why doss the sun appear so much brighter? \qquad
\qquad
\qquad

Life Cycles of Stars

1. At which life-cycle stage are stars the most stable? \qquad
Why? \qquad
2. What type of stellar object has the greatest density? \qquad
What is the evidence for this? \qquad
3. What is the gigantic explosion of a Red Giant called? \qquad
4. Some neutron stars emit pulses of radiation and are called \qquad .
5. Which types of stars are invisiblé? \qquad
vou were looking at the sky and a supernova explosion occurred, why would you not see it? \qquad
[^0]Solar System 10b.

COIIstelialiolis

Constellations are the groupings of stars.

The Big Dipper and the Little Dipper

Earth

Polaris (North Star)

Five times the distance between the Pointer Stars leads to Polaris which is almost directly over the North Pole of Earth.

The Big Dipper circles Polaris once every 24 hours.

Polaris does not seem to move at all. All constellations in the Northern Hemisphere seem to revolve around Polaris because of the Earth's rotation.

1. Polaris is part of the constellation called the \qquad .
2. To find Polaris, use the two \qquad stars of the constellation called the \qquad .
3. The rotation of all \qquad seems to be around \qquad .
4. People in \qquad America can see Polaris at night.

North
South
5. The Big Dipper rotates around \qquad once every \qquad hours.
6. In your own words, tell how to find Polaris and the direction North. \qquad
\qquad
\qquad

Constellations

Corona, the Northern Crown rises in late February; seen in spring

1. The brightest night star, called \qquad is found in the constellation called
2. The constellation \qquad has seven very bright stars, \qquad of which make up a belt.
3. Write the name of the constellation before its description.
\qquad a. a feathered animal

-

b. man's best friend
\qquad
Zopyright © 1986 - Milliken Publishing Co. All rights reserved.
Solar System 11b.

ireduiae and Ualaxies

Nebulae are concentrations of gases and dust materials.

horsehead nebula a dark nebula found in the constellation Orion

Galaxies are clusters of large numbers of stars and nebulae.

\qquad B. \qquad C. \qquad

Which one of the nebulae shown above would be classified as a dark nebula? \qquad
a bright nebula? \qquad
On lines A, B, and C, label the three types of galaxies.
in which types of galaxies is the concentration of stars more centrally located? \qquad
fow are quasars different from regular galaxies? \qquad

Vhy were quasars first called "radio stars"?

1. Solar System

Copyright 01986 - Milliken Publishing Co. All rights reserved.

A Last Look-Part I

1.	radio telescope	spectroscope	refracting telescope
2.	sun	star	moon
3.	spiral	black hole	elliptical
4.	Deneb	Cygnus	Corona
5.	umbra	nebula	penumbra
6.	rotation	revolution	gravity
7.	solar flares	craters	prominences
8.	Rigel	Betelgeuse	Sirius
9.	meteoroid	meteorite	asteroid
10.	Uranus	Neptune	Mercury

B. Write the word that will make each sentence a true statement.

1. The Big Dipper rotates around \qquad once every twenty-four hours.
2. The constellation Orion is sometimes called the \qquad .
3. \qquad are clusters of stars and nebulae.
4. A \qquad nebula is found in the constellation Lyra.
5. The first quasars were called \qquad stars.
6. The Great Red Spot is on the planet \qquad .
7. \qquad is the most recently discovered planet.
8. A comet's \qquad forms as it nears the sun.
9. The \qquad causes friction on a meteoroid and makes it glow.
10. A meteor that strikes the Earth's surface is called a \qquad .
Copyright ${ }^{\bullet} 1986$ - Milliken Pubilishing Co. All rights reserved.

A Last Look-Part II

On line a, name the planet shown.
On line b, write its order of distance from the sun.

1. a. \qquad
b. \qquad

2. a.
b. \qquad

3. a. \qquad
b. \qquad

4. a.
b.

5. a.
b. \qquad

6. a.
b. \qquad

7. a. \qquad
b. \qquad

8. a. \qquad
b. \qquad
9. a. \qquad
b. \qquad
II. Solar Syatem

Copyright ${ }^{\bullet} 1986$ - Milliken Publishing Co. All rights reserved.

M Last Look-rart III

A. Find the statement in the second column that best describes each word in the first column. Write the letter of the statement before the word it describes.
1.
2.
\qquad Mars
a. center of the sun
b. piece of rock or metal material
c. the darkest part of a shadow
d. the "red" planet
4. \qquad Saturn
e. dirty, frozen snowballs
5. \qquad moon
f. bodies between Mars and Jupiter
6. \qquad Venus
g. a colored, glowing halo of gases
7. \qquad comets
h. morning or evening star
i. surrounded by rings composed of rock and ice particles
J. three-fourths of surface covered by water
9.
\qquad asteroids
k. irregularly-shaped clouds of hot gases
10. \qquad core
B. Circle the word that will make each sentence a true statement.

1. \qquad moons orbit Saturn. seventeen
ten four
2. \qquad takes the longest time to revolve around the sun.

Mars Pluto Jupiter
3. Jupiter's moon is called \qquad .
Leo Apollo lo
4. A star's brightness is dependent on temperature, distance from Earth, and \qquad .
size orbit constellation
5. A \qquad hole has the greatest density. white black red
6. A \qquad is the result of the explosion of a Red Giant. supernova
planet
quasar
7. Pulses of radiation are called \qquad .
neutrons
penumbra
pulsars
8. Another name for \qquad is the North Star.
Polaris
Rigel
Cygnus
9. The brightest star as seen from the Eorth is \qquad
Sun
Venus
Sirius
10. \qquad nas a greenish color and narrow rings. Uranus

Jupiter
Venus

A Last Look-rart IV

A. Explain fully the meaning of this cartoon.
"We get a lot of radio signals from a planet Earth.,., but they are mostly commercials!"

C. Complete the crossword puzzle.
B. There is something wrong with each of these pictures. Circle the part that is incorrect and explain why you circled it.

1.

3. \qquad

2. \qquad

4. \qquad

Across

3. analyzes an object's spectrum
4. planet that has many rings
5. incandescent bodies of gases
6. planet covered mostly with water
7. explosion of a Red Giant
8. seen in phases like the moon
9. a grouping of stars
10. third largest planet
11. a cluster of stars and nebulae
12. energy released from the stars
13. the largest planet
14. "shoot!ng stars"
15. envelope of gas around sun

Down

1. Earth's closest neighbor
2. astronomer's tool
3. the center of the universe
4. mass of rocks, dust, and gases
5. concentrations of gas and dust
6. fourth planet from the sun
7. stars that emit radiation pulses
8. closest planet to the sun
9. a black \qquad
10. star in handle of Little Dipper
11. layer nearest the sun's core
12. twin of Uranus
13. the smallest planet

Solar System Project

In groups you will be assigned a planet. You must research the key points for your planet.

Name:
Position:
Size:
Distance from sun:
Mass compared to Earth:
Average temperature:
Composition of the planet:
Any exploration of the planet:
Number of moons:
2 significant dates:
Namesake:
How it formed:
Climate and weather:

Atmospheric composition:

Each person in the group must write a postcard from their planet to somebody on earth. The conversation must be relevant to your planet and the picture on the front should reflect something about your planet.

\qquad Date \qquad

Information Collection Sheet

Use this page to help you write your postcard.

1. My planet is called \qquad .
2. My planet is the \qquad planet in the solar system.
3. My planet is \qquad miles from the sun.
4. This is what my planet looks like:
\qquad
\qquad
\qquad
5. It takes my planet \qquad to orbit the sun. This means that one year on my planet is actually \qquad Earth
\qquad long.
6. It takes my planet \qquad to make one rotation. This means that one day on my planet is actually
\qquad long. That is as many as \qquad Earth days!
7. These are 3 interesting facts about my planet:
i. \qquad
ii. \qquad
iii. \qquad
\qquad

Name \qquad Date \qquad

Information Collection Sheet

Use this page to help you write your postcard.

1. My planet is called \qquad .
2. My planet is the \qquad planet in the solar system.
3. My planet is \qquad miles from the sun.
4. This is what my planet looks like:
\qquad
5. It takes my planet \qquad to orbit the sun. This means that one year on my planet is actually \qquad Earth
\qquad long.
6. It takes my planet \qquad to make one rotation. This means that one day on my planet is actually
\qquad long. That is as many as \qquad Earth days!
7. These are 3 interesting facts about my planet:
i. \qquad
ii. \qquad
iii. \qquad
\qquad

AIM What causes the seasons?

Are you ready for a vacation? Will you go swimming or will you go ice-skating? Of course, it all depends on the season.

Most people live in places that have four seasonsspring, summer, autumn, and winter.

The four seasons are marked by differences in temperature and in the lengths of day and night.

Summer, for example, is much warmer than winter. And summer days are longer than winter days.

What causes seasons? Seasons are caused by the earth's revolution around the sun and the unchanging tilt of the earth's axis.

You have already learned how the earth's axis causes differences in the lengths of day and night. The axis also causes differences in temperature.

Part of the year, the axis leans towards the sun. Part of the year, the axis leans away from the sun.

For example, June 21 is the first day of summer in the Northern Hemisphere. On that day, the Northern Hemisphere leans toward the sun the most. The sun's rays strike head-on or nearly head-on over a large part of this hemisphere.

Head-on, or direct, rays are strong rays. They do not spread over a large area. Direct rays heat up the earth the most.

December 21 is the first day of winter in the Northern Hemisphere. On that day, the Northern Hemisphere leans away from the sun the most. The sun's rays do not strike head-on. They spread over a large area. Rays that spread out are called slanting rays. Slanting rays are weak rays. They heat up the earth the least.

UNDERSTANDING DIRECT AND SLANTING RAYS

Figure A shows direct rays and indirect rays. Study it. Then answer the questions or fill in the blanks.

Figure A

1. Which rays are direct? \qquad
2. Which rays are slanting? \qquad
Answer direct or slanting:
3. Which rays spread out? \qquad
4. Which rays do not spread out? \qquad
5. Which rays are stronger? \qquad
6. Which rays are weaker? \qquad
7. Which rays heat a place more? \qquad
8. Which rays heat a place less? \qquad
9. Winter rays are \qquad rays.
10. Summer rays are \qquad rays.
11. Which of the rays of Figure A can stand for winter rays? \qquad
12. Which of the rays on Figure A can stand for summer rays? \qquad

UNDERSTANDING THE CHANGING SEASONS

Figure B

TAKE A TRIP. Follow the earth for one revolution around the sun. Study Figure B. Then fill in the blanks.

1. The earth revolves around the sun in a \qquad direction.
2. As the earth revolves around the sun, the earth's axis \qquad change. does, does not thange.
3. On June 21, the Northern Hemisphere ...
a) faces \qquad the sun.
b) has mainly \qquad weather. cold. warm -
c) has \qquad hours of daylight than the Southern Hemisphere. more, lewer
d) receives \qquad rays. These are \qquad rays.
e) has the first day of \qquad
4. Between June 21 and September 22, the Northern Hemisphere still leans toward the sun. But every day ...
a) the lean becomes \qquad .
b) the rays become \qquad direct and spread out \qquad
c) the days become \qquad and the nights become \qquad .
5. On September 23...
a) the earth's axis is tilted \qquad the sun.
b) the sun's rays are direct. slanting, nefther direct or indine:t .
c) \qquad starts in the Northern Hemisphere.
d) every place on earth has \qquad hours of day and \qquad hours of night.
6. Between September 23 and December 20 ...
a) the Northern Hemisphere starts to lean \qquad the sun.
b) the sun's rays become more \qquad These rays are direct, slanting . These rays are
\qquad
stronger, weaker
c) days become \qquad and nights become \qquad
7. The Northern Hemisphere leans away from the sun the most on \qquad which is the first day of \qquad name the season
8. Between December 21 and March 20 ...
a) the Northern Hemisphere leans away from the sun. But every day the lean becomes \qquad .
b) the rays become \qquad slanting.
c) the days become \qquad and the nights become \qquad
9. On March $21 \ldots$
a) the earth's axis is tilted \qquad the sun. toward, away from, velther toward por away from
b) the sun's rays are \qquad -
c) name the season starts in the Northern Hernisphere.
10. After March 21 . . .
a) the Northern Hemisphere starts to lean \qquad the sun.
b) the rays become more and more \qquad direct slanting
c) the rays become \qquad stronger, weaker
d) the days become \qquad and the nights become \qquad
11. In the Northern Hemisphere, the number of daylight hours is greatest on
\qquad ; this is the first day of \qquad -. give dste

CONGRATULATIONS! YOUR TRIP AROUND THE SUN IS NOW COMPLETE!

12. How long did your trip take?

REACHING OU'T

Record-breaking temperatures rarely happen on the first day of summer. It is usually the later months of summer that have the hottest weather. Why? \qquad
\qquad
\qquad
\qquad

The Assignment:

Working in groups, you will be asked to create a poster that explains one of the many types of objects that exists in the Universe. After you choose a topic, make sure your poster answers the questions below.

The Topics:

Comets
Galaxies
The Gas Giants
The Moon
Mars Rovers
Astronauts

Asteroids
The Milky Way
Stars
Black Holes
Satellites
Rockets/Shuttles

Nebulae
The Rocky Planets
The Sun
Space Station
Our Solar System
Telescopes

The Questions:

1) What are the general characteristics of the object (how would you define the word)?
2) Where in the Universe would you find them?
3) Two interesting or unique facts about your object.

The Marks:

The poster will be marked /20 according to the attached rubric.

SCIENCE 10F ASTRONOMY POSTER RUBRIC

STUDENT NAME:

CATEGORY	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Use of Class Time	Used time well during each class period. Focused on getting the project done. Never distracted others.	Used time well during each class period. Usually focused on getting the project done and never distracted others.	Used some of the time well during each class period. There was some focus on getting the project done but occasionally distracted others.	Did not use class time to focus on the project OR often distracted others.
Graphics	All graphics are related to the topic and make it easier to to understand. All borrowed graphics have a source citation.	All graphics are related to the topic and most make it easier to understand. All borrowed graphics have a source citation.	All graphics relate to the topic. Most borrowed graphics have a source citation.	Graphics do not relate to the topic OR several borrowed graphics do not have a source citation.
Required	The poster includes all required elements as well as additional information.	All required elements are included on the poster.	All but 1 of the required elements are included on the poster.	Several required elements were missing.
Attractiveness	The poster is exceptionally attractive in terms of design, layout, and neatness.	The poster is attractive in terms of design, layout and neatness.	The poster is acceptably attractive though it may be a bit messy.	The poster is distractingly messy or very poorly designed. It is not attractive.
Grammar and	There are no grammatical mistakes, capitalization and punctuation are correct throughout the poster.	There are 1-2 errors in grammar, capaitalization or punctuation on the poster.	There are 3-4 errors in grammar, capitalization or punctuation on the poster.	There are many errors in grammar, capitalization or punctuation on the poster.
Mechanics				

SCIENCE 10F
 ASTRONOMY PROJECT OPTION \#2 CREATE AN ALIEN

Design an alien that could live on your assigned planet. Consider the following:

- A low gravity planet might cause aliens to be long and thin. Wings would be useful for mobility.
- A high gravity planet might cause an alien to be short and stocky, they might have stronger muscles and bones, or travel through water to make it easier.
- How will the alien cope with the temperature?
- How will your alien breath? Consider the atmosphere.
- What senses will your alien have? Consider touch, taste, sight, hearing and smell.
- How does your alien communicate?
- Will it be intelligent?
- What does it eat or drink?
- What kind of protection does it have? Fur? Skin?

- Is it like a plant or an animal? Is it more like a mammal, a bird, a reptile, an amphibian, or a fish?
- Does your alien have natural defenses like horns or teeth?
- Does your alien use technology to help it survive (fire, tools, or machines?)

Write a head to toe description of your alien explaining all of its features and why they are necessary.

Draw or build your alien.
\qquad

CATEGORY	4	3	2	1
Use of Class Time	Used time well during each class period. Focused on getting the project done. Never distracted others.	Used time well during each class period. Usually focused on getting the project done and never distracted others.	Used some of the time well during each class period. There was some focus on getting the project done but occasionally distracted others.	Did not use class time to focus on the project OR often distracted others
Alien Drawing/Model	Alien has at least 8 identified features. All features are clearly labeled.	Alien has 6-7 identified features. All features are clearly labeled.	Alien has 4-5 identified features. All features are clearly labeled.	Alien has at least 3 identified features. All features are clearly labeled.
Explanations (Value x2)	Clear explanations are present for at least 8 features of the alien. All features and explanations relate directly to the environment.	Clear explanations are present for at least 6-7 features of the alien. OR only 6-7 explanations relate directly to the environment.	Clear explanations are present for at least 4-5 features of the alien. OR only 4-5 explanations relate directly to the environment.	Clear explanations are present for at least 3 or fewer features of the alien OR 3 or fewer explanations relate directly to the environment.
Creativity, Neatness, Grammar, Mechanics	All four criteria are present.	Three criteria are present, one is missing.	Two criteria are present, two are missing.	One criteria is present, three are missing.

Properties of Stars

> 2 factors that determine how luminous a star is:

○ \qquad - high temperature means more ___ is given off
○ \qquad - greater star \qquad means greater luminosity
>2 factors that determine how bright a star looks (from Earth, for example)
\circ \qquad from observer

- Amount of or or is between you and the star (this will absorb the light)
$>$ Colour of a star is based on its temperature
-

3000응
6000°
$\circ-\square$
$20000-35000^{\circ}$
> When looking up at the sky, the stars sometimes seem to form patterns or pictures. These can be classified in two ways:
\circ \qquad - a distinct star pattern

Example:
\circ \qquad - an officially recognized
grouping of stars Example:
$>$ The sky is divided into \qquad regions, each associated with a different constellation.
> Different constellations are visible at different times of the year. Why?

AZIMUTH AND ALTITUDE ACTIVITY
 PART A: AZIMUTH
 "Create your own Treasure Map"

Background Information:

A compass is a handy instrument to have with you if you get lost on Earth. It can also be used, however, to help locate and describe the position of stars, planets, the sun, and other space objects in the sky relative to a certain point on Earth.

Azimuth is a fancy name for compass direction. It is measured relative to true north. When measuring azimuth, North is 0° and measurement goes clockwise.

To use your compass:

1 - Point yourself and your compass toward the object you are finding the azimuth of.
2 - Turn the dial on the outside of the compass until the N lines up with where the (red) arrow is pointing North.

3 - Whatever number points at your object (lines up with "READ BEARING HERE") is the azimuth of that object.

Do some examples with your class to help you figure out how to use the compass properly.
Example)
Begin by walking out the door of the library. Take two paces. What are you looking at? \qquad
Turn toward 0°. Take approximately 18 paces. What is on your right?

Continue in the same direction about 10 paces.
Turn toward 270°. Go 15 paces. What room is on your right hand side?

Continue in the same direction 22 paces.
Turn toward 180°. Take 7 paces.
Turn toward 180°. Where are you? \qquad
Now comes the fun part. Find a spot in the school to start from. It might be the library, the office, the front door, etc. Now use compass directions and paces (roughly equal to 1 meter) to create a map that leads somewhere else in the school. For now, just put in the instructions if someone should walk up or downstairs (maybe ascend or descend sounds cool?).

Print your instructions on a piece of paper. On another piece, give the answers to any questions you ask, as well as your starting and finishing point. Tomorrow, someone will try to follow your directions!

PART B: ALTITUDE
"Create an Astrolabe"

Obviously, when stating the position of an object in the sky we cannot just give a compass direction. We need some measure of how high up to look. This is called the altitude of an object. We can measure altitude using a specialized object called an astrolabe. Measurement starts at the horizon $\left(0^{\circ}\right)$ and goes up to a 90° angle, called the zenith.

INSTRUCTIONS TO CREATE YOUR ASTROLABE

1 - Carefully cut out one of the astrolabe templates.
2 - Carefully pierce a hole at the 'o' at the center of the template.
3 - Put a piece of string (approximately 30 cm or 1 foot long) through the hole and tie a knot then tape it in place on the back of the template. The string should now hang freely in the front.
4 - Tie the weight to the end of the string so it hangs at least 10 cm below the edge of the astrolabe.
5 - Tape or glue the straw securely along the flat side of the astrolabe, and test to make sure you can see through the straw.

Your astrolabe should now look like the one pictured below.

To measure altitude using your astrolabe, hold it 1 meter above the ground letting the string dangle straight down. Look up at the object you are measuring, until you can see the top through the straw. Pinch the string against the astrolabe. That is the measure of the altitude.

DO SOME EXAMPLES WITH YOUR CLASS TO MAKE SURE YOU CAN measure altitude.

Astronomical Distances

We use distance measurements everyday. Different units of measurement are appropriate for different distances. For example, a millimeter works fine to measure rainfall in an average day, but you wouldn't use a millimeter to measure the depth of the ocean. We need to figure out some units that are appropriate for space.

Astronomical Unit - \qquad

Light Year - \qquad

Place or Thing to Measure	Unit of Measurement Centimeter	Conversion Factors	Example
You	Meters	$1 \mathrm{~m}=\ldots \mathrm{cm}$	You are likely about 150 cm
Room might be			
10 m by 12 m			

Problems

1) Given that light travels at $300000000 \mathrm{~m} / \mathrm{s}$, calculate how far light could travel in one year.
2) Neptune is about 30 AU away from the sun. How many kilometers would that be?
3) Your science classroom is about 18 m long. Calculate this length in a) millimeters, b) centimeters, c) kilometers. Explain why we would usually use meters to measure a science classroom instead of one of the other units.
4) The Milky Way Galaxy is about 100000 light years across. Calculate this distance in a) AU's, and b) kilometers. You'll have to use scientific notation.
5) Polaris, the North Star, is 431 light years away from Earth. Calculate this distance in both AU's and kilometers.

Triangulation

Triangulation can be used to measure how far away something is, without going to all the work of actually measuring a huge distance. We use a baseline of known length, two measured angles, and some math to determine the distance instead.

Directions:

1) Measure the distance between two goalposts. This is your baseline.
2) Measure the angle from the edge of the baseline (goalposts) to an object in the field far away.
3) Draw a scale diagram with the baseline and two angle to form a triangle.
4) Measure the height, and use your scale to find the real distance.
5) Go and check outside by measuring.

Questions:

1) How close was your calculated distance to the actual distance. What are some possible sources of error?
2) Why would a process like triangulation be useful to astronomers?

Hand in your scale diagram, along with gthe answers to the questions above.

[^0]: jopyright • 1986 - Milliken Publishing Co. All rights reserved.

