Chapter 1 – Operations with Radicals 1.1 Adding and Subtracting Radicals

*You should be able to demonstrate your understanding of these concepts without using a calculator.

1. Review from Math 10: Convert to a mixed radical in lowest terms.

a. $\sqrt{48}$	b. √96	c. ∛54

2. Review from Math 10: Convert to an entire radical.

a. $6\sqrt{3}$	b. $-4\sqrt{5}$	c. $2\sqrt[3]{5}$	

3. Simplify.

a. $3\sqrt{5} + \sqrt{5} - 6\sqrt{5}$	b. $6\sqrt{7} - 2\sqrt{3} - 10\sqrt{3} + \sqrt{7}$	c. $-4\sqrt{10} + 6\sqrt{7} + \sqrt{10} - 14\sqrt{7}$

4. Simplify by first reducing each radical to lowest terms.

4. On phy by hist reddeing each radical to lowest terms.		
a. $\sqrt{150} - \sqrt{216}$	b. $3\sqrt{20} - \sqrt{45} + 2\sqrt{72}$	c. $\sqrt{98} - \frac{1}{2}\sqrt{20} - \frac{1}{3}\sqrt{18}$

5. Determine the perimeter of a rectangle whose length is $\sqrt{27} + \sqrt{12}$ and whose width is $\sqrt{32} + \sqrt{18}$.

1.2 Multiplying Radicals *You should be able to demonstrate you understanding of these concepts without using a calculator.

1. Multiply the following monomials. Simplify each answer.

a. $(5\sqrt{3})(-4\sqrt{2})$	b. $\left(\sqrt{32}\right)\left(\sqrt{6}\right)$	c. $(3\sqrt{x})(-4\sqrt{x})$

2. Write as a single radical in lowest terms.

a. $(3\sqrt{5})^2$	b. $-(\sqrt{10})^2$	c. $(-2\sqrt{8})(3\sqrt{3})(2\sqrt{2})$

3. Expand each expression. Write the answers in lowest terms.

a. $2\sqrt{3}(\sqrt{6}-3\sqrt{12})$	b. $\sqrt{8}(\sqrt{6}-2\sqrt{2})$	c. $\sqrt{a}\left(\sqrt{a}+\sqrt{a}\right)$

4. Expand each expression. Write the answers in lowest terms.

a. $2\sqrt{5}(3\sqrt{5}-\sqrt{125}+\sqrt{3})$	b. $(5+\sqrt{27})(-1-\sqrt{12})$	c. $(11\sqrt{2}+3)^2$

5. Can you state the conjugate of a monomial expression, such as $-2\sqrt{3}$? Explain your answer.

6. When stating the conjugate of a binomail expression, do you change the negative sign to a positive sign? For example, $-2 + \sqrt{3}$ becomes $2 + \sqrt{3}$?

7. State the conjugate of each binomial expression.

a. $\sqrt{5} + 1$	b. $2 - \sqrt{7}$	c. $\sqrt{18} + \sqrt{3}$

8. Multiply each binomial expression by its conjugate. Simplify the answers.

a. $\sqrt{5} + 1$	b. $2 - \sqrt{7}$	c. $\sqrt{18} + \sqrt{3}$

9. What do you notice happens when a binomial is multiplied by it's conjugate?

1.3 Dividing by Monomial Radical Expressions

*You should be able to demonstrate you understanding of these concepts without using a calculator.

1. Simplify each part (the rational and then the irrational) of the fraction, and then divide.

a. $\frac{8\sqrt{54}}{6\sqrt{8}}$	b. $\frac{\sqrt{96}}{2\sqrt{3}}$	c. $\frac{15\sqrt{30}}{12\sqrt{5}}$

2. Simplify.

Z. Ompiny.		
a. $\frac{6\sqrt{150}}{\sqrt{24}}$	b. $\frac{-7\sqrt{24}}{\sqrt{162}}$	c. $\frac{a\sqrt{ab^3}}{b\sqrt{ab}}$

3. Divide each term in the numerator by the denominator. Write each answer in lowest terms.

a. $\frac{\sqrt{48} + \sqrt{96} - \sqrt{108}}{\sqrt{12}}$	b. $\frac{10\sqrt{20} - 3\sqrt{125}}{2\sqrt{5}}$

4. Think and explain: What happens when a radical is multiplied by itself? WHY does this happen?

5. Simplify each fraction, with rationalized denominators.

a. $\frac{\sqrt{5}}{\sqrt{3}}$	b. $\frac{3}{4\sqrt{6}}$	c. $\frac{\sqrt{32}}{\sqrt{50}}$

6. Express each fraction with a rational denominator. Radicals must be in lowest terms.

a. $\frac{\sqrt{7} + \sqrt{3}}{\sqrt{3}}$	b. $\frac{\sqrt{6} + 2\sqrt{3}}{-3\sqrt{2}}$	c. $\frac{10\sqrt{40} + 8\sqrt{45}}{-2\sqrt{5}}$

1.4 Dividing by Binomial Denominators

*You should be able to demonstrate you understanding of these concepts without using a calculator.

*For this section, use your knowledge of conjugates from section 2.

1. Recall

A conjugate consists of _____ terms.

To create a "conjugate", you _____

When you multiply an expression by its conjugate, you ALWAYS get ______ as a result.

2. Simplify by rationalizing the denominator (case 1: monomial numerators).

a. $\frac{\sqrt{10}}{\sqrt{10}+2}$	b. $\frac{\sqrt{5}}{\sqrt{10+\sqrt{5}}}$	c. $\frac{\sqrt{2}}{\sqrt{12} - \sqrt{8}}$

3. Simplify by rationalizing the denominator (case 2: binomial numerators).

a. $\frac{\sqrt{11}+3}{\sqrt{11}-3}$	b. $\frac{\sqrt{12} + \sqrt{2}}{\sqrt{12} - \sqrt{2}}$	c. $\frac{6-\sqrt{15}}{3+\sqrt{15}}$

4. Simplify by rationalizing the denominator.

