Chapter 1 - Operations with Radicals
 1.1 Adding and Subtracting Radicals

*You should be able to demonstrate your understanding of these concepts without using a calculator.

1. Review from Math 10: Convert to a mixed radical in lowest terms.

a. $\sqrt{48}$	b. $\sqrt{96}$	c. $\sqrt[3]{54}$

2. Review from Math 10: Convert to an entire radical.

a. $6 \sqrt{3}$	b. $-4 \sqrt{5}$	c. $2 \sqrt[3]{5}$

3. Simplify.

a. $3 \sqrt{5}+\sqrt{5}-6 \sqrt{5}$	b. $6 \sqrt{7}-2 \sqrt{3}-10 \sqrt{3}+\sqrt{7}$	c. $-4 \sqrt{10}+6 \sqrt{7}+\sqrt{10}-14 \sqrt{7}$

4. Simplify by first reducing each radical to lowest terms.

a. $\sqrt{150}-\sqrt{216}$	b. $3 \sqrt{20}-\sqrt{45}+2 \sqrt{72}$	c. $\sqrt{98}-\frac{1}{2} \sqrt{20}-\frac{1}{3} \sqrt{18}$

5. Determine the perimeter of a rectangle whose length is $\sqrt{27}+\sqrt{12}$ and whose width is $\sqrt{32}+\sqrt{18}$.

1.2 Multiplying Radicals

*You should be able to demonstrate you understanding of these concepts without using a calculator.

1. Multiply the following monomials. Simplify each answer.

a. $(5 \sqrt{3})(-4 \sqrt{2})$	b. $(\sqrt{32})(\sqrt{6})$	c. $(3 \sqrt{x})(-4 \sqrt{x})$

2. Write as a single radical in lowest terms.

a. $(3 \sqrt{5})^{2}$	b. $-(\sqrt{10})^{2}$	c. $(-2 \sqrt{8})(3 \sqrt{3})(2 \sqrt{2})$

3. Expand each expression. Write the answers in lowest terms.
a. $2 \sqrt{3}(\sqrt{6}-3 \sqrt{12})$
b. $\sqrt{8}(\sqrt{6}-2 \sqrt{2})$
c. $\sqrt{a}(\sqrt{a}+\sqrt{a})$
4. Expand each expression. Write the answers in lowest terms.

a. $2 \sqrt{5}(3 \sqrt{5}-\sqrt{125}+\sqrt{3})$	b. $(5+\sqrt{27})(-1-\sqrt{12})$	c. $(11 \sqrt{2}+3)^{2}$

5. Can you state the conjugate of a monomial expression, such as $-2 \sqrt{3}$? Explain your answer.
\square
6. When stating the conjugate of a binomail expression, do you change the negative sign to a positive sign? For example, $-2+\sqrt{3}$ becomes $2+\sqrt{3}$?
\square
7. State the conjugate of each binomial expression.

a. $\sqrt{5}+1$	b. $2-\sqrt{7}$	c. $\sqrt{18}+\sqrt{3}$

8. Multiply each binomial expression by its conjugate. Simplify the answers.
a. $\sqrt{5}+1$
b. $2-\sqrt{7}$
c. $\sqrt{18}+\sqrt{3}$
9. What do you notice happens when a binomial is multiplied by it's conjugate?

1.3 Dividing by Monomial Radical Expressions

*You should be able to demonstrate you understanding of these concepts without using a calculator.

1. Simplify each part (the rational and then the irrational) of the fraction, and then divide.

a. $\frac{8 \sqrt{54}}{6 \sqrt{8}}$	b. $\frac{\sqrt{96}}{2 \sqrt{3}}$	c. $\frac{15 \sqrt{30}}{12 \sqrt{5}}$

2. Simplify.

a. $\frac{6 \sqrt{150}}{\sqrt{24}}$	b. $\frac{-7 \sqrt{24}}{\sqrt{162}}$	c. $\frac{a \sqrt{a b^{3}}}{b \sqrt{a b}}$

3. Divide each term in the numerator by the denominator. Write each answer in lowest terms.

a. $\frac{\sqrt{48}+\sqrt{96}-\sqrt{108}}{\sqrt{12}}$	b. $\frac{10 \sqrt{20}-3 \sqrt{125}}{2 \sqrt{5}}$

4. Think and explain: What happens when a radical is multiplied by itself? WHY does this happen?
5. Simplify each fraction, with rationalized denominators.

a. $\frac{\sqrt{5}}{\sqrt{3}}$	b. $\frac{3}{4 \sqrt{6}}$	c. $\frac{\sqrt{32}}{\sqrt{50}}$

6. Express each fraction with a rational denominator. Radicals must be in lowest terms.

a. $\frac{\sqrt{7}+\sqrt{3}}{\sqrt{3}}$	b. $\frac{\sqrt{6}+2 \sqrt{3}}{-3 \sqrt{2}}$	c. $\frac{10 \sqrt{40}+8 \sqrt{45}}{-2 \sqrt{5}}$

1.4 Dividing by Binomial Denominators

*You should be able to demonstrate you understanding of these concepts without using a calculator.
*For this section, use your knowledge of conjugates from section 2.

1. Recall

A conjugate consists of \qquad terms.

To create a "conjugate", you \qquad .

When you multiply an expression by its conjugate, you ALWAYS get \qquad as a result.
2. Simplify by rationalizing the denominator (case 1 : monomial numerators).

a. $\frac{\sqrt{10}}{\sqrt{10}+2}$	b. $\frac{\sqrt{5}}{\sqrt{10+\sqrt{5}}}$	c. $\frac{\sqrt{2}}{\sqrt{12}-\sqrt{8}}$

3. Simplify by rationalizing the denominator (case 2: binomial numerators).

a. $\frac{\sqrt{11}+3}{\sqrt{11}-3}$	b. $\frac{\sqrt{12}+\sqrt{2}}{\sqrt{12}-\sqrt{2}}$	c. $\frac{6-\sqrt{15}}{3+\sqrt{15}}$

4. Simplify by rationalizing the denominator.

a. $\frac{3 \sqrt{6}-\sqrt{3}}{2 \sqrt{3}+\sqrt{6}}$	b. $\frac{5}{2 \sqrt{a}+5}$	c. Think: $\frac{*}{*-\sqrt{:)}}$

